Search Results

You are looking at 111 - 120 of 339 items for :

  • "leaf water potential" x
  • Refine by Access: All x
Clear All
Free access

Michael A. Arnold., G. Kim Stearman, and Reed W. Cripps

Rooted cuttings of Acer rubrum `Red Sunset' grown in containers treated on interior surfaces with 100 g Cu(OH)2/liter white interior latex paint, or left untreated, were root pruned or not root pruned and planted in a field plot. A pseudo-bareroot treatment, trees from untreated containers shaken free of media, was included. Height (115 vs. 108 cm) and caliper (12.0 vs. 10.7 mm) at transplant was slightly greater for copper treated trees than for untreated trees. Leaf water potentials (LWP) at transplant were similar for all treatments. Mid-day LWP of trees transplanted from untreated containers tended to be lower than that of trees grown in copper treated containers at days 3, 14, 28, and 53 after transplant. Pseudo-bareroot trees had the most negative mid-day and pre-dawn LWP through day 92. Soil water potentials were from -0.01 to -0.03MPa.

Free access

R. Scott Johnson, Claude Phene, and Charles Medawar

Six irrigation strategies were imposed on a block of O'Henry peach trees irrigated by fanjets. Treatments received different percentages of ET during the various stages of fruit growth and postharvest. ET was estimated by a large weighing lysimeter containing 2 trees and located in the center of the block. Fruit diameters were measured weekly and final fruit weights were determined at harvest. Adjusted fruit weights were estimated by statistically adjusting each treatment to the same fruit load.

Adjusted fruit weight correlated well with soil water content during the month before harvest but not during early stages of fruit growth. Treatments which applied 50% ET during early stages of fruit growth showed reduced fruit size at that time. However, with applications of 150% ET during the final fruit growth stage, fruit size recovered. Adjusted fruit weight also correlated with measures of tree water status including midday leaf water potential and canopy temperature.

Free access

Robert M. Frymire and Janet C. Cole

Uniform rooted cuttings of pyracantha (Pyracantha coccinea M.J. Roem. 'Lalandei') were potted into 3.8 liter containers in a pine bark:sand medium. Plants were treated with a medium drench at 0.5 mg ai per container, or a foliar spray at 150 mg ai per liter, or no uniconazole. Plants also were exposed to one of three irrigation regimes: nonstressed, stressed or acclimated. Uniconazole had little effect on leaf water potential, osmotic potential, transpiration or leaf conductance. The uniconazole drench treatments reduced plant growth and increased N, Ca, and Mn concentrations in the leaves. Foliar applications had less effect on plant growth and elemental content Acclimated and stressed plants had lower water and osmotic potentials, transpiration rates and leaf conductance than nonstressed plants on the final day of the stress cycle. Acclimated plants had higher levels of N and Mn with lower levels of Zn in the leaves than either stressed of nonstressed plants.

Full access

Wansang Lim, Kenneth W. Mudge, and Jin Wook Lee

We determined the effect of moderate water stress on the growth of american ginseng (Panax quinquefolium), and on concentrations of six major ginsenosides (Rg1, Re, Rb1, Rc, Rb2, and Rd). Two-year-old “rootlets” (dormant rhizome and storage root) were cultivated in pots, in a cool greenhouse (18.3 ± 2 °C). Pots were watered either every 5 days (control) or every 10 days (stress), repeatedly for 8 days. Soil volumetric water content was measured during the last 10 days of the experiment for both treatments. Leaf water potential, measured on the last day of the experiment, was -0.43 MPa for the control and -0.83 MPa for the stress treatment. Drought stress did not affect above-ground shoot or root dry weight. Initial rootlet fresh weight (covariate) had a significant effect on the concentration of ginsenosides Re, Rb1, Rc, and Rb2. Drought stress increased the concentration of ginsenosides Re, Rb1, and total ginsenoside concentration.

Free access

Amber Bonds and Thayne Montague

Balled in burlaped is a common method for moving large trees into landscapes and affects of transplanting on tree gas exchange and growth has been documented. Organic mulch provides many benefits and is often recommended for landscapes. Because little research has been conducted on affects organic mulch has on gas exchange and growth of transplanted and non-transplanted trees, this research investigated the effects transplanting and organic mulch have on gas exchange and growth of field grown red oak (Quercus shumardii) trees. In March 2003, 12 multi-trunked trees were selected from a tree farm near Lubbock, Texas, and six trees were dug using a tree spade and placed in their original location. Mulch at a depth of 10 cm was placed around the rootball of 3 transplanted and 3 nontransplanted trees and maintained at this depth the remainder of the experiment. Over the next three growing seasons predawn leaf water potential and midday stomatal conductance were measured on each tree every 1 to 3 weeks. At the end of every growing season shoot elongation, stem caliper and subsample leaf area were recorded. Our data indicates transplanting has a negative affect on gas exchange and growth of red oak. Each growing season gas exchange, shoot growth, and subsample leaf area were less for transplanted trees when compared to nontransplanted trees. Mulch also influenced gas exchange and growth of these trees. For nontransplanted trees with mulch, gas exchange and growth were reduced when compared to nonmulched, nontransplanted trees. For transplanted trees with mulch, predawn leaf water potential was less negative and subsample leaf area was greater when compared to transplanted trees with out mulch.

Free access

L.E. Williams and F.J. Araujo

A study was conducted to compare three measurements of determining water status of grapevines (Vitis vinifera L.) in the field. Predawn leaf water potential (ΨPD), midday leaf water potential (Ψl), and midday stem water potential (Ψstem) were measured on `Chardonnay' and `Cabernet Sauvignon' grapevines grown in Napa Valley, California late in the 1999 growing season. Both cultivars had been irrigated weekly at various fractions (0, 0.5, and 1.0 for `Chardonnay' and 0, 0.5, 0.75, and 1.5 for `Cabernet') of estimated vineyard evapotranspiration (ETc) from approximately anthesis up to the dates of measurements. Predawn water potential measurements were taken beginning at 0330 hr and completed before sunrise. Midday Ψl and Ψstem measurements were taken only between 1230 and 1330 hr. In addition, net CO2 assimilation rates (A) and stomatal conductance to water vapor (gs) were also measured at midday. Soil water content (SWC) was measured in the `Chardonnay' vineyard using a neutron probe. Values obtained for ΨPD, Ψl, and Ψstem in this study ranged from about -0.05 to -0.8, -0.7 to -1.8, and -0.5 to -1.6 MPa, respectively. All three measurements of vine water status were highly correlated with one another. Linear regression analysis of Ψl and Ψstem versus ΨPD resulted in r 2 values of 0.88 and 0.85, respectively. A similar analysis of Ψl as a function of Ψstem resulted in an r2 of 0.92. In the `Chardonnay' vineyard, all three methods of estimating vine water status were significantly (P < 0.01) correlated with SWC and applied amounts of water. Lastly, ΨPD, Ψl, and Ψstem were all linearly correlated with measurements of A and gs at midday. Under the conditions of this study, ΨPD, Ψl, and Ψstem represent equally viable methods of assessing the water status of these grapevines. They were all correlated similarly with the amount of water in the soil profile and leaf gas exchange as well as with one another.

Free access

D. Joseph Eakes, Robert D. Wright, and John R. Seiler

Abbreviations: EC, electrical conductivity; MSC, moisture stress conditioning; P L , leaf turgor potential; PV, pressure-volume; RWC, relative leaf water content; SWC, symplastic water content; ψ L , leaf water potential; π 100 , π 0 osmotic

Free access

William R. Graves, Robert J. Joly, and Michael N. Dana

Honey locust (Gleditsia triacanthos var. inermis Wind.) and tree-of-heaven Ailanthus altissima (Mill.) Swingle] sometimes are exposed to high root-zone temperatures in urban microclimates. The objective of this study was to test the hypothesis that seedlings of these species differ in how elevated root-zone temperature affects growth, leaf water relations, and root hydraulic properties. Shoot extension, leaf area, root: shoot ratio, and root and shoot dry weights were less for tree-of-heaven grown with the root zone at 34C than for those with root zones at 24C. Tree-of-heaven with roots at 34C had a lower mean transpiration rate (E) than those grown at 24C, but leaf water potential (ψ1) was similar at both temperatures. In contrast, shoot extension of seedlings of honey locust grown with roots at 34C was greater than honey locust at 24C, E was similar at both temperatures, and ψ1 was reduced at 34C. Hydraulic properties of root systems grown at both temperatures were determined during exposure to pressure in solution held at 24 or 34C. For each species at both solution temperatures, water flux through root systems (Jv) grown at 34C was less than for roots grown at 24C. Roots of tree-of-heaven grown at 34C had lower hydraulic conductivity coefficients (Lp) than those grown at 24C, but Lp of roots of honey locust grown at the two temperatures was similar.

Free access

G. S. Sibbett, D. Goldhamer, S. Southwick, R.C. Phene, J. Yeager, and D. Katayama

Variable lengths of water deprivation immediately prior to harvest were imposed on mature French prune trees for four consecutive years. Irrigation cutoff durations were about 45, 37, 30, 22, 17 and 12 days prior to harvest during 1986-89.

Predawn leaf water potential best reflected water deprivation length and reached minimum values of about -1.5 MPa with the most severe cutoff. Magnitude of peak stomatal conductance was reduced and occurred earlier in the day with longer cutoff regimes.

Rate and time-course development of preharvest fruit drop was variable from year-to-year, but there were no significant differences in total drop between cutoff treatments. Only in the fourth year, following three years of no difference were tree fruit load and yield significantly reduced but then only with the most severe cutoff. Soluble solids were higher and drying ratios lower with the longer cutoffs. Fruit size was significantly reduced in the third year of the experiment. Trunk circumferences were significantly lower only with trees subjected to the longer cutoff regimes.

Free access

David Goldhamer, Mario Viveros, and Ken Shackel

Previously well irrigated mature `Nonpareil' almond trees (Prunus dulcis) were subjected to varying periods of water deprivation prior to harvest and then to either full or no postharvest irrigation. Eight preharvest water deprivation (PWD) lengths ranging from 14 to 63 days were evaluated on a sandy loam soil with a rooting depth of about 1.5 m.

Development of tree water deficits occurred rapidly following PWD. Predawn leaf water potential decreased to about -1.8 and -3.1 MPa after 10 and 20 days, respectively. Defoliation began about 30 days after PWD and trees subjected to more than 50 days completely defoliated. The rate of hull split was directly related to the PWD duration. With early cutoffs, the size of the hull split-arrested nuts at harvest was large compared with the same nut type in later cutoffs suggesting that as nuts develop, large nuts are preferential sinks for assimilates. Kernel size was only mildly reduced by PWD during the first study year. There was a trend toward lower total kernel yield with longer PWD as a result of smaller kernel girth but yield differences were not significant. The number of nuts remaining in the tree after shaking was not related to PWD. Bark strength increased after PWD with 10 to 14 days required to prevent shaker damage. Postharvest irrigation resulted in late season defoliation but no rebloom. Bloom density reductions in 1990 were related more to the lack of 1989 postharvest irrigation than to early PWD.