Search Results

You are looking at 101 - 110 of 3,292 items for :

  • water stress x
  • Refine by Access: All x
Clear All
Free access

Paul R. Adler and Gerald E. Wilcox

Two mechanisms that reduce water and salt stress, respectively, are an increase in root hydraulic conductivity (LP) and reduction in Na and Cl absorption and transport to the leaf. NH4 +-N decreased muskmelon LP 55-70% while under 100 mM NaCl stress and 40-50% in the absence of NaCl stress. A decrease in LP increases the rate of water stress development as the transpiration rate increases. Although dry weight decreased about 70%, with NO- 3-N, muskmelon remained healthy green, while with NH+ 4-N they became chlorotic and necrotic with a 100% and 25% increase in leaf blade Na and Cl compared to NO- 3-N, respectively. Further investigation indicated that NH+ 4-N increased muskmelon sensitivity to NaCl through both an increased rate of net Na influx and transport of Na to the leaf. Since Na influx partitioning is controlled by mechanisms K/Na selectivity and exchange across membranes, the NH+ 4-N inhibition of K absorption may impair K/Na exchange mechanisms. Reduced K/Na selectivity or Na efflux are implicated as the source of the increased net Na influx with NH+ 4-N. The importance of K in preventing Na partitioning to the leaf was confined through removal of K from the nutrient solution thereby simulating the NH+ 4-N-induced gradual K depletion in muskmelon. Our work indicates that at a given level of water or NaCl stress, NO- 3-N reduces the level of stress experienced by muskmelon through increasing LP and reducing the net rate of Na influx and transport to the sensitive leaf blade. This avoidance mechanism should enable muskmelon plants fertilized with NO- 3-N to tolerate greater levels of stress.

Free access

Bingru Huang and Hongwen Gao

To investigate shoot physiological responses to drought stress of six tall fescue (Festuca arundinacea) cultivars representing several generations of turfgrass improvement, forage-type `Kentucky-31', turf-type `Phoenix', `Phoenix', and `Houndog V', and dwarf-type `Rebel Jr` and `Bonsai' were grown in well-watered or drying soil for 35 days in a greenhouse. Net photosynthetic rate (Pn), stomatal conductance (gs), transpiration rate (Tr), relative water content (RWC), and photochemical efficiency (Fv/Fm) declined during drought progression in all cultivars, but the time and the severity of reductions varied with cultivars and physiological factors. Pn, RWC, gs, and Tr decreased significantly for `Rebel Jr', `Bonsai', and `Phoenix' when soil water content declined to 20% after 9 days of treatment (DOT) and for `Falcon II', `Houndog V', and `Kentucky-31' when soil water content dropped to 10% at 15 DOT. A significant decrease in Fv/Fm was not observed in drought-stressed plants until 21 DOT for `Rebel Jr', `Bonsai', and `Phoenix' and 28 DOT for `Houndog V', `Kentucky-31', and `Falcon II'. The decline in Pn was due mostly to internal water deficit and stomatal closure under short-term or mild drought-stress conditions. After a prolonged period of drought (35 DOT), higher Pn in `Falcon II', `Houndog V', and `Kentucky-31' could be attributed to their higher Fv/Fm.

Free access

In-Chang Son, Jae-Hyuk Park, and Seon-Kyu Kim*

Three-year-old `Campbell Early' grapevines were subjected to 4 levels of shading (0, 30, 60, and 90%) combined with 3 levels of soil moisture content (12, 34.6, and 100 kPa), and their growth responses were examined. Increase in shoot length of vines grown without soil water stress (12 kPa and 34.6 kPa) and light stress (non-shading and 30% shading) was higher than those grown under 100 kPa and heavy shading. Leaf number showed a gradual increase in proportion to decreasing shading and increasing light level, showing some overgrowth with 30% shading. Leaf area increment of vines with sufficient soil moisture (12 kPa) was the highest, but 30% shading reduced the rate by one half. Chlorophyll content of vine leaves grown under 12 kPa or 34.6 kPa increased regardless of shading level, but that of 30% shading became more important after 30 days. The qP and qN values of vines grown under 12 kPa and 34.6 kPa decreased with the shading level, and under 100 kPa, even non-shading vines showed a drastic decrease. When grown under 12 kPa, photosynthetic rate of non-shaded vines was higher than shaded vines, but when water-stressed, that of non-shaded vines showed a sharp decrease. Increasing shading and water stress level resulted in decrease of sucrose and starch content and increase of reducing sugar.

Free access

Edward W. Bush, James N. McCrimmon, and Allen D. Owings

Four warm-season grass species [common carpetgrass (Axonopus affinis Chase), common bermudagrass (Cynodon dactylon [L.] Pers.), St. Augustinegrass (Stenophrum secondatum Walt. Kuntze.), and zoysiagrass (Zoysia japonica Steud.)] were established in containers filled with an Olivia silt loam soil for 12 weeks. Grasses were maintained weekly at 5 cm prior to the start of the experiment. Water stress treatments consisted of a control (field capacity), waterlogged, and flooded treatments. Waterlogging and flood treatments were imposed for a period of 90 days. The effects of water stress was dependent on grass species. Bermudagrass vegetative growth and turf quality were significantly reduced when flooded. Carpetgrass, St. Augustingrass, and zoysiagrass quality and vegetative growth were also reduced by flooding. St. Augustinegrass and zoysiagrass root dry weight was significantly decreased. Zoysiagrass plants did not survive 90 days of flooding. Leaf tissue analysis for common carpetgrass, common bermudagrass, St. Augustinegrass, and zoysiagrass indicated that plants subjected to waterlogging and flooding had significantly elevated Zn concentrations.

Free access

Steven G. Russell, Sylvia M. Blankenship, and Walter A. Skroch

A field study was initiated in 1981 in western North Carolina to determine the influence of eight groundcover management systems on quality of `Redchief Red Delicious' apple (Malus domestica) grafted onto rootstock of M VIIA. Management systems included: bare soil, Secale cereale mulch, minimal cultivation, Festuca arundinacea, Dactylis glomerata, Poa pratensis, Muhlenbergia schreberi and Rubus sp. Thus far, fruit quality data indicate that fruits produced in plots of cool-season grasses are smaller and less mature than those produced in vegetation-free plots or plots of warm-season grasses. A negative correlation was noted between high fruit quality and water deficit stress as measured by water potential and stomatal conductance.

Free access

Steven G. Russell, Sylvia M. Blankenship, and Walter A. Skroch

A field study was initiated in 1981 in western North Carolina to determine the influence of eight groundcover management systems on quality of `Redchief Red Delicious' apple (Malus domestica) grafted onto rootstock of M VIIA. Management systems included: bare soil, Secale cereale mulch, minimal cultivation, Festuca arundinacea, Dactylis glomerata, Poa pratensis, Muhlenbergia schreberi and Rubus sp. Thus far, fruit quality data indicate that fruits produced in plots of cool-season grasses are smaller and less mature than those produced in vegetation-free plots or plots of warm-season grasses. A negative correlation was noted between high fruit quality and water deficit stress as measured by water potential and stomatal conductance.

Free access

Maria Victoria Cremona, Hartmut Stützel, and Henning Kage

Two-year field experiments were carried out to evaluate the suitability of crop water stress index (CWSI) as a basis for irrigation scheduling of kohlrabi (Brassica oleracea L. var. gongylodes) by comparison with irrigation scheduling based on total soil water content (SWC). In the first year, irrigation scheduling when CWSI exceeded 0.3 resulted in more frequent water applications, but the total amount of irrigation water given was lower compared to irrigation when SWC fell below 70%. Kohlrabi tuber fresh weight at harvest was similar in both scheduling treatments, leading to 25% higher irrigation water use efficiency in the CWSI-scheduled plots. In the second year, three threshold levels, i.e., 0.2 and 80%, 0.4 and 60%, and 0.6 and 40% of CWSI and SWC, respectively, were investigated. At the level of highest water supply (CWSI = 0.2 and SWC = 80%), the total amount of water supplied was less in the CWSI but the number of irrigations was higher than in the SWC plots. The CWSI-based approach may be a method for irrigation scheduling of vegetables under temperate conditions. The higher irrigation frequency required would make this method particularly suitable in combination with irrigation system that allow frequent applications, i.e., in drip irrigation. To improve the method, a coupling with a soil water balance model seems promising.

Free access

Rita Giuliani and James A. Flore

Infrared thermometry was applied to estimate the canopy temperature of apple trees with the aim to detect a water stress condition early by remote sensing. The measurements were taken in Michigan during Summer 1998 in a 4-year-old apple orchard. Digital thermo-images of the canopy were taken using a IR imaging radiometer on well-watered trees and trees in a water shortage condition. The images were taken considering the geometrical relationship among camera position, canopy, and sun position. During the measurements, environmental (air and soil) conditions were also monitored. A software program was developed to analyze the thermal data, to show the thermal frequency distribution and to estimate the statistical parameters, which are able to represent the physiological condition of the trees. An increase of the canopy surface temperature (connected to the partial stomatal closure that is affecting the leaf energy balance) was detected early in the non-irrigated plants, compared to the well-irrigated trees, already when physiological responses as photosynthetic activity and fruit growth were not yet negatively affected by water deficit. The study confirms that there are the theoretical basis to use infrared thermometry and digital image processing to early detect the water stress on fruit trees.

Free access

Mehrassa Khademi, David S. Koranski, David J. Hannapel, Allen D. Knapp, and Richard J. Gladon

Water uptake by impatiens (Impatiens wallerana Hook. f. cv. Super Elfin Coral) seeds was measured as an increase in fresh weight every 24 hours during 144 hours of germination. Seeds absorbed most of the water required for germination within 3 hours of imbibition and germinated at 60% to 67% moisture on a dry-weight basis. Germination started at 48 hours and was complete by 96 hours at 25C. Water stress of -0.1, -0.2, -0.4, and -0.6 MPa, induced by polyethylene glycol 8000, reduced germination by 13%, 49%, 91%, and 100%, respectively, at 96 hours. Under the same water-stress conditions, increases in fresh weight were inhibited by 53%, 89%, 107%, and 106%, respectively. Three distinct groups of storage proteins were present in dry seed; their estimated molecular weights were 1) 35, 33, and 31 kDa; 2) 26, 23, and 21 kDa; and 3) two bands <14 kDa. Major depletion of storage proteins coincided with the completion of germination. Water potentials that inhibited germination also inhibited degradation of storage proteins. During germination under optimum conditions, the soluble protein fraction increased, coinciding with a decrease in the insoluble fraction.

Free access

Tomasz Anisko and Orville M. Lindstrom

Water status is known to have an impact on cold hardiness of plants. Cold hardiness of `Catawbiense Boursault' rhododendron was examined under continuous and periodic water stress. Under continuous stress, water content of growing medium was maintained at 0.6 to 0.75, 0.45 to 0.6, or 0.3 to 0.45 m3·m-3. Under periodic stress, water content was either maintained between 0.6 to 0.8 m3·m-3 or plants were subjected to drought episodes at various times in late summer, autumn, and early winter. During a drought episode, watering was delayed until water content was below 0.4 m3·m-3. Watering then resumed and water content was maintained between 0.3 to 0.4 m3·m-3. Cold hardiness was evaluated on detached leaves and stem sections. The effect of continuous water stress depended on its severity and duration. Moderate stress did not increase cold hardiness compared to well watered plants during the first winter, but it did so when continued into the second winter. More severe stress increased cold hardiness during the first winter, but it decreased cold hardiness during the subsequent winter. The effect of periodic water stress depended on the timing of application. During initial and final stages of acclimation, cold hardiness increased in response to water stress less than during the intermediate stages. Water-stress-induced cold hardiness gradually decreased after rewatering.