Search Results

You are looking at 101 - 110 of 279 items for :

  • subirrigation x
  • Refine by Access: All x
Clear All
Free access

C. D. Stanley and G. A. Clark

The use of the recently developed fully-enclosed seepage subirrigation system for fresh market tomato production has demonstrated an improved ability to maintain a water table at a desired level (when compared to conventional ditch-conveyed seepage subirrigation) by means of more precisely controlled application and a greater uniformity throughout the field. This is achieved through use of microirrigation tubing rather than open ditches to convey water to raise the water table to desired levels. When manually controlled, the system has shown to save 30-40% in irrigation amounts primarily due to almost total elimination of surface runoff. An automated control system was designed and evaluated with respect to practicality, durability, and performance of various designs of level-sensing switches. The advantages and limitations of the designs in relation to water table control for tomato production will be presented.

Free access

P. Tardif, J. Caron, I. Duchesne, and J. Gallichand

Overhead sprinkler systems in nurseries use large amount of water and fertilizers and generate runoff losses that may alter the quality of surface or subsurface water. Moreover, the cost associated with these losses is important. Water recycling may reduce that cost and the losses to the environment. Our objective was to evaluate the performance of two recycling systems (recycling and storing water in a tank and recycling solution through subirrigation on capillary mats) relative to a conventional overhead sprinkler system with no recycling. Two species (Prunus × Cistena and Spirea japonica `Little Princess') and seven substrates were used on plots subject to these irrigation practices. Treatments were compared for the water balance and the plant growth. After the first season, preliminary results showed that water and nutrient consumption were 65% less for sprinkler irrigation with recycling and with subirrigation on capillary mats. Plant yield and soil water content were statistically the same for the three treatments.

Free access

Thomas B. Bruning, Michael H. Chaplin, and Henry G. Taber

Ground water contamination resulting from continuous liquid fertilization technologies is a serious problem facing greenhouse growers in the United States. Rooted Dendranthema grandiflora Tzvelev. cultivar 'Iridon' cuttings were transplanted into 11 cm pots filled with a 50% peatmoss and 50% perlite (v/v) media containing 0.10, 0.21, 0.42, or 0.84 g N from a controlled release 12-10-17 plus minors fertilizer deposited directly below the transplanted cutting. Pots were assigned to a top-water or subirrigation treatment.

Subirrigation reduced the nitrate leachate concentration by as much as 250 ppm as compared with top-watering. Fertilizer N rate linearly decreased plant height in both of the irrigation treatments. Final dry weight of the shoot peaked at the 0.21 g N rate in both the irrigation treatments.

Full access

J.W. Prevatt, G.A. Clark, and C.D. Stanley

Three vegetable irrigation systems, semi-closed subirrigation (seepage), fully enclosed subirrigation (seepage), and drip irrigation, were evaluated for use on sandy soils with naturally high water tables to determine comparative irrigation costs for tomato production. Investment, fixed (ownership), and variable (operating) costs were estimated for each irrigation system. The investment costs of the drip irrigation system were significantly greater than those for the semi-closed and fully enclosed irrigation systems. The variable costs, however, for the semi-closed system were considerably less than those for the fully enclosed and drip irrigation systems. The semi-closed irrigation system, therefore, was determined to be the least-cost tomato irrigation system under present fuel cost and nonlimiting water supply conditions.

Free access

Troy M. Buechel, David J. Beattie, and E. Jay Holcomb

A characteristic problem with peat moss is its difficulty in initial wetting and rewetting, especially in a subirrigation system. Wetting agents improve wetting characteristics primarily by reducing the surface tension of water. This results in a rapid, uniform movement of water by capillary rise through the growing medium.

Two methods were used to compare the effectiveness of different wetting agents: gravimetric and electrical. Ten cm pots containing peat moss were placed in a subirrigation system. The gravimetric method used a laboratory scale where pots were periodically weighed to determine the amount of water absorbed. The electrical method utilized thin beam load cells, which have strain gages bound to the surface, to determine the weight of a suspended object. Load cells were coupled with a Campbell Scientific datalogger to collect data every minute without removing the pot from subirrigation. Because the effect of buoyancy altered the true weights, equations were generated to adjust the water uptake values. Corrected weights were used to create absorption curves for comparison of the slopes to determine which wetting agent has the fastest rate of absorption. The load cell reliably and accurately described the wetting characteristics of Peat moss and we found good agreement with the gravimetric method.

Free access

Jaime K. Morvant, John M. Dole, and Janet C. Cole

Euphorbia pulcherrima `Gutbier V-14 Glory' were grown with 220 mg·liter–1 N (20N–4.4P–16.6K) using ebb-and-flow (EF), capillary mat (CAP), microtube (MIC), and hand-watering (HAN) and were irrigated either daily (pulse - P) or as needed (regular - R). For all irrigation systems, pulse irrigation produced the greatest total dry weight. HAN-R produced lower total dry weight than all other irrigation systems and frequencies. Root dry weight was highest with pulse subirrigation (EF and CAP). MIC-P, EF-P, and EF-R were the most water-efficient treatments. The experiment was repeated twice with similar results. In a second experiment, Pelargonium ×hortorum `Pinto Red' root balls were sliced into three equal segments; top, middle, and bottom. For all irrigation systems, root counts were lowest in the top region. EF root counts were greatest in the middle region, while MIC root counts were greatest in the bottom region. The two subirrigation systems had higher average root counts than the two top-irrigated systems (HAN and MIC). In general, there was less difference in EC between regions for top-irrigated than for subirrigated root balls. The EC was lowest in the bottom and middle regions of EF and the bottom region of MIC and CAP. For subirrigation, the highest EC was in the top region. For all systems, pH was lowest in the bottom region.

Free access

John Kabashima

Several production nurseries were surveyed about techniques used to reduce water usage and runoff. The nurseries surveyed used from 400,000 gallons of water per day to 5,000,000 gallons of water per day during peak usage. Water availability and the potential for nitrate runoff from large production nurseries to contaminate the environment have resulted in requirements by regulatory agencies to decrease water usage and runoff. Nurseries have complied by using techniques such as drip irrigation, subirrigation, pulsing, recycling, and computer controlled irrigation systems. The use of techniques such as recycling and “better management practices” have resulted in significant decreases (approximately 30%) in water usage.

Free access

John A. Biernbaum, William R. Argo, Brian Weesies, Allen Weesies, and Karen Haack

A series of experiments was conducted to quantify the rate of nutrient loss from a container medium in a 15-cm-wide (1.3-liter) pot with a container capacity (CC) of 0.7 liter/pot under mist propagation and to determine the effectiveness of reapplying fertilizer to medium at 90% of CC with either top watering or subirrigation. Reducing the volume of water applied per day decreased the rate of nutrient leaching. Based on CC leached (CCL), the rate of nutrient loss was similar for all treatments. Differences in the rate of macronutrient removal from the media were measured, but, by 2 CCL, the concentration of all nutrients tested was below acceptable levels for the saturated media extract. With top watering, reapplying water-soluble fertilizer (WSF) at volumes under 0.2 liter/pot did not affect the nutrient concentration in the lower half of the pot at WSF concentrations up to 86 mol N/m3. Applying up to 0.8 liter/pot did increase nutrient concentrations in the lower half of the pot, but the media nutrient concentrations were lower than that of the applied WSF concentration. Applying WSF with subirrigation was limited by the moisture content of the media prior to the irrigation.

Free access

William R. Argo and John A. Biernbaum

Hybrid impatiens were grown in 15 cm pots containing one of six root medium. After seven weeks, plant available water holding capacity (AWHC) was measured as the difference between the drained weight of the plant and pot after a one hour saturation and the weight of the pot when the plant wilted. Water absorption potential (WAP) was calculated as the capacity of each root medium to absorb applied irrigation water up to the AWHC and was measured at two moisture levels with top watering (two leaching fractions), drip irrigation (two leaching fractions) and flood subirrigation. Top watering moist media (initial AWHC = 35%) with leaching fractions of 30+ % was me most efficient method of rewetting media and was the only irrigation method tested to obtain WAP's of 100%. In comparison, flood subirrigation was the least efficient method of rewetting media with WAP of 27% for dry media (initial AWHC = 0%), and obtained a total WAP of 55% for moist media (initial AWHC = 23%). In media comparisons, the incorporation of a wetting agent into a 70% peat/30% bark mix at planting increased the WAP compared to the same media without a wetting agent with nine of the ten irrigation treatments.

Free access

C.D. Stanley and G.A. Clark

The effect of water table level and fertilizer rates on bell pepper production grown with the fully enclosed subirrigation (FES) system was studied over three fall growing seasons (1992–94). The FES system uses buried microirrigation tubing in the field to convey water for maintaining a water table level and has shown to achieve application savings of 30% to 40% compared to the conventional subirrigation method that maintains a high water table using lateral field ditches. Controlled water table levels of 45, 60, and 75 cm below soil surface and fertilizer rates of 1194, 1716, and 2239 kg·ha–1 (18–0–21 expressed as N–P–K) were used as treatments replicated in time over 3 growing seasons. The 45-cm water table level and 2239 kg·ha–1 fertilizer rate are considered the conventional commercial practices. Results showed that comparable seasonal production levels were achieved among fertilizer rates and water table levels with no significant interactions between treatments. These data indicate that using a lower target water table level allows lower rates of fertilizer to be used because the susceptibility of the fertilizer to leaching caused by excessive rainfall is lessened due to increased soil water storage capacity.