Search Results

You are looking at 101 - 110 of 1,285 items for :

  • season extender x
  • Refine by Access: All x
Clear All
Free access

R.J. Campbell and C. de B. Campbell

Mango (Mangifera indica L.) currently ranks fifth, along with apple, among fresh fruit imported by the United States, with more than 142,000 MT imported in 1995. Imports have doubled in the past 5 years and are projected to increase by 20% to 30% by the year 2000. Mexico supplied >80% of the imported volume in 1995, with the remaining 20% supplied by Brazil, Ecuador, Guatemala, Haiti, Nicaragua, Peru, and Venezuela. Individual production areas (countries) have traditionally controlled a market, defined by time of year, resulting in a near 12-month supply of mangos in the United States in the past few years. However, market share among producing countries is rapidly changing as individual producers and production regions extend their season through the use of different available microclimates, bloom manipulation, and new cultivars. With this extension of production season in each region, there is now significant market overlap and traditional regional windows have been shortened or eliminated. Producers in all regions must now make timely management decisions to assure their future profitability. A holistic management scheme involving attention to fruit quality, cultivar selection, volume consistency, and marketing is presented. Such a management plan is key to an individual region's success in establishing and holding a given market window.

Free access

Laurie G. Houck, Joel F. Jenner, and Bruce E. Mackey

Commercially packed lemons (Citrus limon (L.) Burm.), grapefruit (C. paradisi Macfayden) and oranges (C. sinensis (L.) Osbeck) from CA and AZ were fumigated in corrugated fiberboard shipping boxes with methyl bromide (MB) at doses efficacious for controlling various postharvest insect pests. Fruit developed no rind injury when fumigated at 24 or 32 g MB/m3 for 2 hr at 21C. At 40 g MB fruit developed slight to moderate peel injury, and sometimes there were more decayed fruit. More rind injury developed at 48 gm MB, the injury was more severe, and there were more decays. Curing fruit for 3-4 days at 15-20C before fumigation, and extending the aeration period after fumigation from a few hours to 1 or 3 days reduced fruit injury. Early-season fruit were not injured as severely as late-season fruit. Lemons picked with green-colored peel but fumigated after they turned yellow (by holding at 13C for 4-10 weeks to degreen) were not injured as much as silver or yellow lemons.

Free access

Roger Kjelgren and Craig Spihlman

Limited root development of nursery stock in root-control bags facilitates harvest but without irrigation may predispose stock to water stress. The effect of bags and irrigation on growth and water relations of field-grown Malus sieboldii var. zumi were investigated following transplanting as large liners into a silty-clay soil. Predawn leaf water potential (ψ), and midday stomatal conductance (gs) and ψ, were measured periodically through the season. Late-season osmotic potential (ψπ), caliper, leaf area, and root growth were also measured. Non-irrigated treatments exhibited water stress during an extended mid-summer drought, as predawn ψ and particularly gs were less than irrigated treatments, resulting in lower vegetative growth and ψπ. For combined bagged treatments water relations did not differ, but leaf area, root growth, and ψπ, but not caliper, were less than non-bagged trees. Growth measurements and ψπ of non-irrigated bagged trees, however, were consistently lower but nonsignificant than the other treatments. Bag-induced root reduction can limit some top growth even with optimum soil water. Moreover, in terms of potential Type-II errors extrapolated over a conventional production cycle, trees grown in root-control bags in normally non-irrigated soils may be more susceptible to water stress and subjected to further cumulative growth limitation.

Free access

Bhim B. Khatri, Janak D. Shakya, and James H. Lorenzen

Potato (Solarium tuberosum L.) is a major food crop for farmers of higher elevations (> 2000 m) in Nepal. Farmers plant potatoes in early spring after snow melt, utilizing residual winter moisture and occasional pre-monsoon rains for crop growth. The growing season is usually ended by late blight (LB, Phytophthora infestans) after the onset of the monsoon. However, drier areas of the interior of W. Nepal regularly experience drought and impaired plant growth before the monsoon, and the lesser duration and intensity of the monsoon there should result in lower LB pressure with a June/July planting.

Planting just prior to the monsoon in highland areas with annual rainfall < 1000 mm has given outstanding yields with cvs Achirrana Inta and I-1124. On-station and farmers' field trials have produced over 40 and 30 T ha-1, respectively, more than 4x the national average yield and nearly 2x the equivalent yield for a normal season planting in the same site. The LB resistant cultivars and the new cropping pattern may be extended to similar sites. (Supported by Swiss Devel. Assistance & Humanitarian Aid, Bern, Switzerland)

Free access

Xin Zhao and Edward E. Carey

High tunnels, unheated greenhouses, have been shown to be a profitable season-extending production tool for many horticultural crops. Production of cool-season vegetables during hot summer months can be achieved using shaded high tunnels. Microclimate in high tunnels and open field was monitored during summer trials of leaf lettuce, in which unshaded tunnels and shaded tunnels (39% PAK white shadecloth) were used, respectively, in 2002 and 2003. Wind speed was consistently lower in high tunnels. Compared to open field, daily air temperature was about 0.7 °C higher in unshaded high tunnels, and 0.5 °C lower in shaded high tunnels. Relative humidity was slightly lower in unshaded tunnels, but tended to increase in shaded tunnels, in comparison to the open field. When using shadecloth, soil temperature was lowered by 1∼3 °C and the leaf surface temperature was significantly reduced by 1.5∼2.5 °C. In shaded high tunnels, PAR light dropped by at least 50% relative to the outside, where the maximum PAR light intensity reached 1800 μmol·m-2·s-1. Overall, shaded high tunnels resulted in higher quality lettuce, with less bolting and bitterness. Reference crop evapotranspiration (ET0) was estimated from meteorological data on a daily basis using the FAO-56 method. ET0 was lowest in shaded high tunnels, and highest in the open field. Relatively lower ET0 in high tunnels indicated a likely lower water requirement and therefore improved water use efficiency compared with the open field.

Free access

Duane W. Greene

AVG was applied as the ReTain formulation over three harvest seasons to determine the influence of time of application on drop control efficacy and its influence on fruit maturity of 'McIntosh' apples. Effective drop control was achieved through the commercial harvest season with application of AVG made from 1 to 6 weeks before the anticipated start of harvest for untreated fruit. Drop control extended beyond the normal harvest period when application was made either 2 weeks or 1 week before anticipated harvest. Application made between 6 and 4 weeks before anticipated harvest generally delayed parameters associated with ripening, such as softening, degradation of starch, and development of red color, more than applications made on later dates. While AVG consistently and effectively retarded abscission, the length of time it controlled drop varied from year to year, even when used on similar trees in the same block. Once applied, it required 10 to 14 days before AVG started to retard fruit abscission. AVG controlled drop linearly with increasing concentration. AVG was a superior drop control compound than NAA. Chemical names used: aminoethoxyvinylglycine (AVG), naphthaleneacetic acid (NAA).

Free access

J.M. Kemble, P. Sanders, W. Foshee, and D. Fields

High tunnels (HT) can reduce negative environmental strains on crop production and have been shown to extend the growing season for many small fruits and vegetables. Because HTs require relatively low initial investment compared with standard greenhouse structures, they are well suited for the small to mid-size grower. HTs provide a practical means of entry into intensive crop production for farmers who direct market their produce. By using HTs, direct market farmers may create a special marketing niche which set's them apart by offering locally grown vegetables, cut flowers, small fruits, and herbs earlier in the growing season and into the fall after frost. This project examined 1) the potential use of HTs for the production of fresh-market tomatoes (Lycopersicon esculentum Mill.) and strawberries (Fragaria spp.) and 2) the seasonal market potential for these crops in Alabama. Viable markets were determined by conducting surveys at regional locations throughout Alabama, such as farmers markets, grocery stores, shopping centers, etc. Upscale restaurants were also surveyed to determine the demand for locally grown herbs. These surveys were used to determine target markets by asking demographic questions and determining spending habits. Justification for establishing a direct farmer-to-consumer market or a direct farmer to restaurant market for HT products was determined.

Free access

Michael W. Smith and Bruce W. Wood

Allometric equations were developed for orchard-grown pecan [Carya illinoinensis (Wangenh.) C. Koch] trees. Trees, ranging in size from 22 to 33 cm in trunk diameter 1.4 m above the ground, were destructively harvested from two sites. The entire aboveground portion of each tree was harvested and then divided into leaves, current season's shoots, and branches ≥1 year old plus trunk. Roots were sampled by digging a trench beginning beneath the trunk and extending to one-half the distance to an adjacent tree, then separating the roots from the soil. Roots were then divided into those less than 1 cm in diameter and those ≥1 cm in diameter. Equations in the form Y = eaXb were developed to estimate dry biomass of most tree components and the whole tree, where Y is the dry weight, e is the base of the natural logarithm, X is the trunk diameter at 1.4 m above the ground, and a and b are coefficients. A linear equation provided the best fit for estimating the weight of the current season's growth. Power equations were also developed to estimate the weights of inner bark and wood for different size trunks or branches.

Free access

Christopher A. Proctor, Matt D. Sousek, Aaron J. Patton, Daniel V. Weisenberger, and Zachary J. Reicher

; Hinton et al., 2001 ) and are commercially available. The objectives of our study were to determine if changing a.i. in initial and sequential applications affects season-long crabgrass control and if single spring applications of PRE tank mixtures

Free access

Zachary J. Reicher and Glenn A. Hardebeck

Converting cool-season golf course fairways to creeping bentgrass (Agrostis palustris Huds.) is desirable because it affords excellent playability, enhanced recuperative potential, and enhanced disease tolerance compared to annual bluegrass (Poa annua sp. Timm.) or perennial ryegrass (Lolium perenne), which are common species in fairways. However, converting current golf course fairways to creeping bentgrass with nonselective herbicides is problematic because it disrupts play and decreases revenue, as fairways must be closed for an extended period of time. The objective of our study was to quantify the effect of trinexapac-ethyl (TE), overseeding date, and overseeding rate on the success on the gradual conversion of cool-season fairways to creeping bentgrass over 3 years. `Penneagle' creeping bentgrass was overseeded at 0, 49, or 98 kg·ha-1 in fall, spring, or fall+spring after aerification, and application of TE at 0.0, 0.2, or 0.4 kg·ha-1. Gradual conversion to creeping bentgrass was effective, on perennial ryegrass fairways, with up to 36% cover of creeping bentgrass after 3 years of overseeding. However, only a maximum of 3% creeping bentgrass cover was obtained after the third year of overseeding into primarily annual bluegrass fairways. Fall overseeding with bentgrass at 49 or 98 kg·ha-1 was equally effective and additional spring overseeding did not improve establishment. Applications of TE prior to overseeding did not enhance the conversion. Chemical name used: 4-cyclopropyl-a-hydroxy-methylene-3,5-dioxocyclohexanecarboxylic acid ethyl ester (trinexapac-ethyl).