Search Results

You are looking at 101 - 110 of 6,658 items for :

  • growth rate x
  • Refine by Access: All x
Clear All
Free access

John E. Lloyd, Daniel A. Herms, Mary Ann Rose, and Jennifer Van Wagoner

The objective of this study was to determine if fertilization and irrigation practices in the nursery affect plant growth and stress resistance following outplanting in the landscape. Flowering crabapple (Malus) `Sutyzam', grown in containers under factorial combinations of two irrigations schedules (containers irrigated at 25% or 50% container capacity) and three rates of fertilization (N at 50, 200, 350 mg·L–1) in a nursery in 1997 were outplanted in a low maintenance landscape in 1998. Trees from the high fertility regime grew faster in the landscape the year of transplant. Tree growth in the landscape was positively correlated with N concentration in plants in the nursery and negatively correlated with concentrations of phenolics in the foliage in the landscape. However, the trees showing the greatest amount of diameter growth had the lowest concentrations of foliar phenolics. Trees with low concentrations of phenolics also exhibited a greater potential for herbivory by larvae of the eastern tent caterpillar, gypsy moth, and white-marked tussock moth. Additionally, trees exhibiting rapid growth in the landscape also had reduced photosynthesis during summer drought compared to slower growing trees, suggesting a reduced drought tolerance in the landscape. Differences in growth and stress resistance did not carry beyond the year of transplant. Our results illustrate that irrigation and fertilization methods in the nursery can influence growth post transplant, however fertilization also appears to have a significant impact on stress resistance traits of the trees. These impacts from the nursery production methods had no effect after plants had acclimated to the conditions in the landscape during the year following transplant.

Full access

Kimberly K. Moore

Growth of `Aladdin Peach Morn' petunia (Petunia × hybrida) and `Accent White' impatiens (Impatiens wallerana) was compared in substrates containing 0%, 30%, 60%, or 100% compost made from biosolids and yard trimmings and fertilized with Nutricote Total 13-13-13 (13N-5.7P-10.8K) Types 70, 100, and 140 incorporated at rates of 0.5x, 1x, 2x, or 3x (x = standard application rate for a medium-feeding crop). Petunia shoot dry weight of plants fertilized with Type 70 incorporated at 0.5x increased as the percentage of compost in the substrate increased from 0% to 60% and then decreased, while shoot dry weight of plants fertilized with Type 70 incorporated at 1x, 2x, or 3x increased as the percentage of compost increased from 0% to 30% and then decreased. Impatiens shoot dry weight of plants fertilized with Type 70 incorporated at 0.5x and 1x also increased as the percentage of compost increased from 0% to 30% and then decreased, while shoot dry weight of plants fertilized at 2x and 3x decreased as the percentage of compost increased from 0% to 100%. Both petunia and impatiens shoot dry weight of plants fertilized with Type 100 and Type 140 incorporated at 0.5x, 1x, 2x, or 3x increased as the percentage of compost increased from 0% to 60% and then decreased.

Free access

E.D. Leonardos, M.J. Tsujita, and B. Grodzinski

The influence of irradiance, CO2 concentration, and air temperature on leaf and whole-plant net C exchange rate (NCER) of Alstroemeria `Jacqueline' was studied. At ambient CO2, leaf net photosynthesis was maximum at irradiances above 600 μmol·m-2·s-1 photosynthetically active radiation (PAR), while whole-plant NCER required 1200 μmol·m-2·s-1 PAR to be saturated. Leaf and whole-plant NCERs were doubled under CO2 enrichment of 1500 to 2000 μl CO2/liter. Leaf and whole-plant NCERs declined as temperature increased from 20 to 35C. Whereas the optimum temperature range for leaf net photosynthesis was 17 to 23C, whole-plant NCER, even at high light and high CO2, declined above 12C. Dark respiration of leaves and whole plants increased with a Q10 of ≈2 at 15 to 35C. In an analysis of day effects, irradiance, CO2 concentration, and temperature contributed 58%, 23%, and 14%, respectively, to the total variation in NCER explained by a second-order polynomial model (R 2 = 0.85). Interactions among the factors accounted for 4% of the variation in day C assimilation. The potential whole-plant growth rates during varying greenhouse day and night temperature regimes were predicted for short- and long-day scenarios. The data are discussed with the view of designing experiments to test the importance of C gain in supporting flowering and high yield during routine harvest of Alstroemeria plants under commercial greenhouse conditions.

Free access

Bernadine Strik, Timothy Righetti, and Gil Buller

Fertilizer nitrogen (FN) recovery, and changes in nitrogen (N) and dry weight partitioning were studied over three fruiting seasons in June-bearing strawberry (Fragaria ×ananassa Duch. `Totem') grown in a matted row system. Fertilizer nitrogen treatments were initiated in 1999, the year after planting. The standard ammonium nitrate N application at renovation (55 kg·ha-1 of N) was compared to treatments where additional N was applied. Supplemental treatments included both ground-applied granular ammonium nitrate (28 kg·ha-1 of N) applied early in the season and foliar urea [5% (weight/volume); 16 kg·ha-1 of N] applied early in the season and after renovation. When labeled N was applied (eight of nine treatments) it was applied only once. The impact of no FN from the second through the third fruiting season was also evaluated. Fertilizer nitrogen treatment had no impact on total plant dry weight, total plant N, yield or fruit quality from the first through the third fruiting seasons. Net dry matter accumulation in the first fruiting season was 2 t·ha-1 not including the 4 t·ha-1 of dry matter removed when leaves were mowed during the renovation process. Seasonal plant dry weight and N accumulation decreased as the planting aged. Net nitrogen accumulation was estimated at 40 kg·ha-1 from spring growth to dormancy in the first fruiting season (including 30 kg·ha-1 in harvested fruit, but not including the 52 kg·ha-1 of N lost at renovation). Recovery of fertilizer N ranged from 42% to 63% for the broadcast granular applications and 15% to 52% for the foliar FN applications, depending on rate and timing. Fertilizer N from spring applications (granular or foliar) was predominantly partitioned to leaves and reproductive tissues. A large portion of the spring applied FN was lost when plants were mowed at renovation. Maximum fertilizer use efficiency was 42% for a granular 55 kg·ha-1 application at renovation, but declined to 42% just before plant growth the following spring, likely a result of FN loss in leaves that senesced. In June, ≈30% of the N in strawberry plants was derived from FN that was applied at renovation the previous season, depending on year. This stored FN was reallocated to reproductive tissues (22% to 35%) and leaves (43% to 53%), depending on year. Applying fertilizer after renovation increased the amount of remobilized N to new growth the following spring. The following June, 15% of plant nitrogen was derived from fertilizer applied at renovation 2 years prior.

Free access

Ernest P. Hayman and Henry Yokoyama

A 26-μm DCPTA seed treatment for guayule (Parthenium argentatum Gray) was developed. We obtained a 23% increase in germination rate as measured by the coefficient of velocity (C.V.). Greenhouse seedlings grown from DCPTA-treated seeds exhibited a 22% increase in dry weight and a 95% increase in survival rate under water-limiting conditions. In field-grown guayule, multiple foliar applications of 8.2 mm DCPTA increased the total amount of rubber in roots as much as 58% without affecting the rubber content in the stems. Chemical name used: 2-Diethylaminoethyl-3,4-Dichlorophenylether (DCFTA).

Free access

Lambert B. McCarty, Landon C. Miller, and Daniel L. Colvin

Free access

Ian Merwin and Warren C. Stiles

Eight vegetation management systems (VMS) were evaluated over four years in a newly planted apple site. VMS treatments included pre- and post-emergence herbicide strips, a close-mowed sodgrass, a growth-suppressed (maleic-hydrazide) sodgrass, a crownvetch “living mulch,” clean cultivation, and straw mulch. Soil moisture supply was highest under the straw mulch and lowest under crownvetch, and varied inversely with groundcover biomass. Leaf N was deficient in tress in both sodgrass VMS, and increased by the lequme “living mulch” only after four years. Leaf Cu was lowest, and appeared to limit tree growth in VMS with prolonged soil moisture deficits. No significant differences were observed in leaf transpiration over a broad range (10 to 700 kPa) of soil matric tension. Cumulative trunk crosssectional area was greatest in straw-mulched trees and least in sodgrass and crownvetch VMS. The optimal soil matric tension for nutrient uptake and tree growth appeared to be 175 to 200 kPa in this orchard. Increasing the width of glyphosate herbicide strips from 1.5 to 2.5 m in tree rows did not improve tree growth, nutritional status or fruit yield.

Free access

Edward W. Bush, Allen D. Owings, Dennis P. Shepard, and James N. McCrimmon

Common carpetgrass (Axonopus affinis Chase), mowed at 3.8 or 7.6 cm and fertilized with at least 98 kg·ha–1 N, maintained acceptable lawngrass quality during the 1993 and 1994 growing seasons. Cumulative vegetative growth (CVG) quality and coverage were increased in mowed plots fertilized with 98, 147, or 196 kg·ha–1 N. Unsightly seedheads were a problem in nonmowed plots 3 weeks after the start of the experiment, but did not appear in the mowed plots. Our results indicate that mowing common carpetgrass at 3.8 or 7.6 cm and fertilizing with 98, 147, or 196 kg·ha–1 N will provide acceptable turfgrass quality.

Free access

T.G. Boucounis, T. Whitwell, and J.E. Toler

Ten crops were evaluated for potential use as field bioassay species for cinmethylin and chlorimuron application rates in two soil types. Cinmethylin injured sweet corn (Zea mays L.) and grain sorghum [Sorghum bicolor (L.) Moench] at concentrations as low as 0.28 kg·ha-1 on either soil type, while broadleaf crops were tolerant. Chlorimuron injured sweet corn, grain sorghum, radish (Raphanus sativus L.), cucumber (Cucumis sativus L.), and watermelon [Citrullis lanatus (Thunb.) Mansf.] at rates ≥ 2.5 g·ha-1, and squash (Cucurbita pepo L.) at rates ≥ 5.0 g·ha-1 on a Dothan sand. In a Congaree silt loam, chlorimuron injured cucumber at rates ≥ 5.0 g·ha-1, sweet corn, watermelon, and squash at rates ≥ 10 g·ha-1, and grain sorghum, radish, and cotton (Gossypium hirsutum L.) at rates ≥ 20 g·ha-1. Soybean and snapbean (Phaseolus vulgaris L.) were tolerant to chlorimuron in both soil types. Cinmethylin activity was not altered by soil type, but with chlorimuron greater crop injury was observed in the Dothan sand than in the Congaree silt loam. Sweet corn and grain sorghum were the most sensitive indicator species to cinmethylin and cucumber was the most sensitive to chlorimuron in both soils. Plant emergence and population alone are not valid indicators for crop tolerance to herbicides. Quantitative measurements such as shoot dry weight were more indicative of crop susceptibility to chlorimuron than plant populations. Chemical names used: exo -1-methyl-4-(1-methylethyl)-2 -[(2-methylphenyl) methoxy]-7-oxabicyclo[2.2.1]heptane (cinmethylin); 2-[[[[(4-chloro-6-methoxy-2-pyrimidinyl)amino] carbonyl]amino] sulfonyl]benzoic acid (chlorimuron).