Search Results

You are looking at 101 - 110 of 531 items for :

  • bermudagrass x
  • Refine by Access: All x
Clear All
Free access

Billy J. Johnson, Robert N. Carrow, and Tim R. Murphy

Field experiments were conducted to determine the effects of foliar iron (Fe) applied with postemergence herbicides on injury, color, and quality of `Tifway' bermudagrass [Cynodon transvaalensis Burtt-Davy × Cynodon dactylon (L.) Pers.]. Iron significantly decreased injury and improved quality and color of `Tifway' bermudagrass in conjunction with herbicide treatment. Turf injury was less for 4 to 18 days after the initial MSMA application when Fe was added. Injury was also less from sequential Fe treatment with MSMA + metribuzin (up to 4 days) and MSMA + imazaquin (from 4 to 10 days) compared to the respective herbicides applied alone. There was no difference in turf injury from Fe when imazaquin at 1.3 kg·ha-1 was applied as a single treatment. However, turf treated with Fe and two applications of imazaquin (9- to 10-day interval) recovered from herbicide injury faster than when treated only with the herbicide. Iron did not prevent immediate 2,4-D + mecoprop + dicamba injury to the bermudagrass, but did hasten turf recovery from injury at 26 days after treatment. With a few exceptions, `Tifway' bermudagrass quality was higher and color improved when Fe was added. However, injury expressed as loss of shoot density was not affected by Fe and only injury expressed as color loss was improved by Fe. Chemical names used: 3,6-dichloro-2-methoxybenzoic acid (dicamba), 2-[4,5-dihydro-4-methyl)-4-(1-methylethyl)-5-oxo-1H-imidazol-2yl]-3-quinolinecarboxylic acid (imazaquin), (±)-2-(4-chloro-2-methylphenoxy)propanoic acid (mecoprop), 4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one (metribuzin), monosodium salt of MAA (MSMA), and (2,4-dichlorophenoxy)acetic acid (2,4-D).

Full access

M.L. Elliott and M. Prevatte

Eco, Milorganite, Ringer, and Sustane natural organic fertilizers, alone or combined with the synthetic organic fertilizer isobutylidene diurea (IBDU), were compared with IBDU alone for their effect on a `Tifdwarf' hybrid bermudagrass [Cynodon dactylon (L.) Pers. × C. transvaalensis Burtt-Davy] golf course putting green. Over the 2-year study period, no consistent differences were observed among the fertilizer treatments on the turfgrass growth parameters of quality, clipping weights, or root weights.

Free access

Patrick E. McCullough, Haibo Liu, Lambert B. McCarty, and Ted Whitwell

Dwarf bermudagrass morphological characteristics following the use of plant growth regulators have not been reported. The objective of this greenhouse study was to determine short-term effects of seven plant growth regulators on clipping yield, chlorophyll concentration, and root mass of `TifEagle' bermudagrass. Growth regulators tested included ethephon, fenarimol, flurprimidol, maleic hydrazide, mefluidide, paclobutrazol, and trinexapac-ethyl. Two applications of each compound were made over a 6-week period. Root mass was reduced 39% by fenarimol and 43% by flurprimidol, while other PGRs had root mass similar to untreated turf. `TifEagle' bermudagrass treated with paclobutrazol, mefluidide, fenarimol, and flurprimidol averaged 45% less root mass than trinexapac-ethyl-treated turf. Trinexapac-ethyl was the only compound to reduce clippings and enhance turf quality without negative rooting effects. Chemical names used: [4-(cyclopropyl-[α]-hydroxymethylene)-3,5-dioxo-cyclohexane carboxylic acid ethyl ester] (trinexapac-ethyl); {α-(1-methylethyl)-α-[4-(trifluoro-methoxy) phenyl] 5-pyrimidine-methanol} (flurprimidol); (+/-)-(R*,R*)-β-[(4-chlorophenyl) methyl]-α-(1, 1-dimethyl)-1H-1,2,4,-triazole-1-ethanol (paclobutrazol); (N-[2,4-dimethyl-5 [[(trifluoro-methyl)-sulfonyl] amino]phenyl]acetamide) (mefluidide); [1,2-dihydro-3,6-pyridazine-dione] (maleic hydrazide); [(2-chloroethyl)phosphonic acid] (ethephon); and (2-(2-chlorophenyl)-2-(4-chlorophenyl)-5-pyrimidinemethanol) (fenarimol).

Free access

James D. McCurdy, J. Scott McElroy, and Elizabeth A. Guertal

/year, although most are roughly 10 to 25 g N/m 2 /year ( Ledgard and Steele, 1992 ; McNeill and Wood, 1990 ). White clover is well suited for use within warm-season turfgrasses and is already a common feature within bermudagrass pastures of the

Free access

Glenn R. Wehtje, Joey N. Shaw, Robert H. Walker, and Walker Williams

Various inorganic soil amendments have been promoted as a means of improving the chemical and physical properties of certain soils. To test this hypothesis, a marginally productive soil was supplemented with 20%, 40%, 60%, and 80% (v/v) of either selected inorganic amendments or sand. Amendments consisted of commercially available diatomaceous earth, calcined clay, zeolite, and crystalline SiO2. The soil material was extracted from the argillic horizon of a Cecil sandy loam (fine, kaolinitic, thermic Typic Kanhapludults). Ability of these soil-amendment mixtures to promote `Tifway' bermudagrass [Cynodon dactylon (L.) Pers. × C. transvaalensis Burtt Davy] growth was evaluated under greenhouse conditions, and contrasted to that obtained in nonamended soil. Selected chemical and physical properties that are pertinent to plant growth were also evaluated. The experiment, which was conducted 3×, began with a §60-day period in which both water and nutrients were optimum. This was followed by a 30-day drought. During optimum water and nutrients, no soil-amendment treatment(s) consistently resulted in superior bermudagrass growth compared to soil alone. However, <2% of the bermudagrass tissue that was produced during the drought became green and succulent with the resumption of irrigation in nonamended soil. This percentage was exceeded by all treatments that contained either ≥60% diatomaceous earth (Axis), or ≥40% calcined clay (Profile); and by 100% zeolite (Clinolite) and 100% silica (Green's Choice). Drought-sustaining ability of soil-amendment mixtures was significantly (P < 0.05) correlated with water-holding ability, soil strength, bulk density, and oxygen diffusion rate, but not correlated with either pH or cation exchange capacity (CEC). While certain inorganic amendments did improve the drought-sustaining ability of soil, the amount required was generally ≥40%.

Free access

Michael Maurer* and Justin Weeaks

Throughout much of the Southwestern United States, poor quality water and limited water resources require innovative methods to conserve water. No research to date has indicated whether seeded bermudagrass Cynodon dactylon can be established by using subsurface drip irrigation (SDI). In 2001 (Expt. I) and 2002 (Expt. II), seeded bermudagrass was evaluated for establishment using SDI. Treatments consisted of emitters and tubing spaced at 30, 46, and 61 cm. The control treatment consisted of pop-up sprinklers. Salinity accumulation is a concern when irrigating turfgrass in areas of poor water quality and low annual rainfall. Salinity accumulation was visible at the soil surface during establishment in 2001, but turfgrass showed no visible signs of stress due to salinity. In 2002, substantial rainfall reduced salinity accumulation during establishment as salinity was not present on the soil surface. Salinity accumulation was greater in most months at the 0-15 cm depth in both years compared to the 15-30 cm depth. Full turfgrass coverage (≥90%) for the control plots in 2001 was about 8.5 weeks and the SDI treatments had complete coverage in 10 weeks. Turfgrass coverage for all treatments in 2002 was 9 weeks. Expt. II had a slightly faster establishment rate due to greater rainfall and different soil characteristics than that of Expt. I. Root count and depth of roots for both years showed roots to 61 cm depth in all treatments. A general trend of higher salinity accumulation at the midpoint between tubing was seen in Expts. I and II. However, after significant rainfall salinity levels returned to concentrations comparable to initial soil salinity concentrations in both years. This research documents the ability to successfully establish seeded bermudagrass using SDI.

Free access

G.L. Miller, L.B. McCarty, and I.R. Rodriguez

Establishment of an acceptable turfgrass quality on sand-based golf putting greens presents major agronomic and environmental challenges to turfgrass managers. The objective of this study was to evaluate of five N:P:K fertilizer ratios to aid in the establishment of bermudagrass on sand-peat (85:15 v/v). `Floradwarf' and `Tifdwarf' bermudagrass [Cynodon dactylon (L.) Pers. × C. transvaalensis Burt-Davy] were sprigged in Aug. 1996 at the Envirogreen in Gainesville, Fla. `Tifeagle' and `Tifway' bermudagrass were sprigged in May 1999 at Clemson Univ. research green in Clemson, S.C. Treatments consisted of N:P2O5:K2O ratios of 1:0:1, 1:0:2, 1:1:1, 1:2:1, and 1:3:1 applied based on an N rate of 49 kg/ha per week. Treatments were applied weekly for 7 weeks. In Gainesville, the best growth rate was achieved from the 1:1:1 ratio of N:P2O5:K2O. While the 1:2:1 and 1:3:1 plots filled in well, they did not experience the same coverage rates as plots fertilized with the 1:1:1 ratio. In Clemson, similar growth was achieved with the 1:1:1, 1:2:1, and 1:3:1 treatments. The 1:0:1 and 1:0:2 plots were slow to establish at both locations. In general there were no differences in root and shoot dry weights of grasses grown in Clemson; whereas these weights were positively correlated to growth rates in Gainesville. These studies indicate that turf will respond to P fertilizer when it is grown in a P-deficit situation and that N or K cannot substitute for balanced nutrition.

Free access

B.J. Johnson

A field experiment was conducted over 2 years to determine the effects of treatment dates with plant growth regulators (PGRs) on performance of `Tifway' bermudagrass [Cynodon transvaalensis Burtt-Davy] × [C. dactylon (L.) Pers.]. For flurprimidol at 0.84 kg·ha-1, the highest injury occurred from 16 or 28 June application in 1987 and from 17 May or June application in 1988. The injury was similar from treatment dates with flurprimidol + mefluidide or paclobutrazol + mefluidide. The PGRs were applied over a longer period in 1987 than 1988 without affecting vegetative suppression of `Tifway' bermudagrass. However, in 1988, the suppression from the 17 May treatment was equal to or better than that obtained when treatment dates were delayed until 1 June or later. Chemical names: α-(1 -methylethyl)- α -[4-(trifluoromethoxy)phenyl]-5-pyrimidinemethanol (flurprimidol); N -[2,4-dimethyl-5-[[(trifluoromethyl)sulfonyl]amino]phenyl]acetamide (mefluidide); (±)-(R*R*) β -[(4-chlorophenyl)-methyl]- α -(1,1-dimethylethyl)- 1H -1,2,4-triazole- 1-ethanol (paclobutrazol).

Free access

E.A. Guertal and J.N. Shaw

A 3-year study was conducted in Auburn, Ala., on an established hybrid bermudagrass [Cynodon dactylon (L.) Pers. × C. transvaalensis Burtt-Davy `Tifway'] stand maintained at a 2.54-cm mowing height. Treatments were level of soil traffic applied via a weighted golf cart to produce turf and soil that received varying amounts of traffic. Dormant bermudagrass was overseeded with perennial ryegrass (Lolium perenne L.) each October, which remained until May of each year. Spectral data were collected monthly using a multispectral radiometer. Percent reflectance data were acquired over 512 discrete wavelengths in visible (VIS) and near-infrared (NIR) ranges. Quarterly data collection included soil penetrometer and bulk density measurements to a depth of 15 cm. After 2 years of traffic, both soil penetrometer and bulk density data indicated statistically significant increases in soil compaction. In general, as traffic increased there were also increases in percent reflectance in the VIS range. Data were subject to temporal variation, however, as values changed with the date of sample collection. The NIR reflectance data provided little consistent correlation to measurements of soil compaction. Use of NIR and VIS radiometry to evaluate turf stress showed some potential, but temporal variation must be considered.

Full access

Manuel Chavarria, Benjamin Wherley, James Thomas, Ambika Chandra, and Paul Raymer

because they function as biological filters that can assimilate excess nutrients and, to some extent, salts from saline water ( Hayes et al., 1990 ). Bermudagrass, seashore paspalum, zoysiagrass, and st. augustinegrass are four of the most widely used turf