Search Results

You are looking at 101 - 110 of 1,310 items for :

  • "tissue culture" x
  • Refine by Access: All x
Clear All
Free access

James R. Ault

1 To whom reprint requests should be addressed; e-mail . I thank volunteer Ling-Ling Wei for conducting much of the tissue culture work.

Free access

Abba Upadhyaya, Tim D. Davis, Daksha Sankhla, and N. Sankhla

Both kinetin and BA promoted in vitro shoot formation from hypocotyl explants of Lupinus texensis Hook. placed on Murashige and Skoog (MS) medium. With either cytokinin, shoot formation was best at ≈4.5 μm. Adventitious root formation was observed only on tissue culture-derived shoots placed in MS media containing 5.4 to 54 μM NAA. IAA and IBA, at concentrations ranging from 5 to 55 μm, failed to stimulate rooting. Even at the optimal concentration of NAA, only 14% of the shoots produced roots. Thus, although hypocotyl explants readily produced shoots, adventitious root formation on these shoots occurred with relatively low frequency. Chemical names used: 6-benzylaminopnrine (BA); indole-3-acetic acid (IAA); indole-3-butyric acid (IBA); 6-furfurylaminopurine (kinetin); 1-naphthaleneacetic acid (NAA).

Free access

Takashi Ikeda, Yukihiro Fujime, Satoshi Terabayashi, and Shuichi Date

Garlic (Allium sativum L.) calli in vitro were evaluated over a range of salt concentrations and by adding mannitol to culture medium with reduced salt to provide equivalent osmoticum. The water potential of the medium ranged from -0.27 to -0.73 MPa under the various salt and osmotic stress conditions. The percent increase in calli was highest in standard Murashige & Skoog (MS) medium and was reduced when MS salts were reduced but the water potential of medium was adjusted to that of standard MS medium by addition of mannitol. The water potential of callus tissue was similar to that of tissue culture media over a 20-fold range (10% to 200%) of MS concentrations. Turgor of callus tissue was not influenced by any stress conditions. These results indicate that the optimum concentration of salt and water status of medium for formation of garlic calli was provided by standard MS medium.

Free access

Lisa J. Rowland and Elizabeth L. Ogden

Conditions for improving the efficiency of shoot regeneration from leaf sections of highbush blueberry (Vaccinium corymbosum L.) were investigated. Effectiveness of tissue culture medium supplemented with the cytokinin conjugate zeatin riboside or the cytokinin zeatin at 10, 20, or 30 μm was compared with medium supplemented with the optimum 2iP concentration of 15 μm. Use of 20 μm zeatin riboside resulted in the most shoots per leaf section, » 6-fold higher than the number of shoots produced on 2iP medium. The number of shoots produced on medium supplemented with zeatin was not significantly higher than the number of shoots produced on 2iP medium. Consequently, we concluded that the cytokinin conjugate zeatin riboside was more effective than either of the free cytokinins, 2iP or zeatin, in promoting shoot regeneration from leaf sections of highbush blueberry. Chemical names used: 6-(y,y-dimethylallylamino)-purine (2iP); 6-(4-hydroxy-3-methyl-but-2-enylamino)purine (zeatin).

Free access

Karim H. Al-Juboory and Jabar H. Al-Niami

108 POSTER SESSION (Abstr. 362–374) Cell and Tissue Culture I

Free access

Carol Auer, Jerry D. Cohen, and Todd Cooke


Full access

R.N. Trigiano and R.A. May

A tissue culture laboratory exercise illustrating regeneration of whole plants from leaf segments of chrysanthemum by organogenesis is described. Using simple, common media, shoots can be generated in 5 weeks and rooted after an additional 3 weeks. Acclimatization of plants can be accomplished in a simple mistbed in the greenhouse. The exercise is adaptable to depict genotype differences among cultivars, optimization of shoot induction, effects of growth regulators, and experimental design. Callus is typically not formed during shoot formation; however, co-cultivation of leaf segments with a virulent strain of Agrobacterium tumefaciens produces callus with a strain of disarmed A. tumefaciens harboring NPTII construct affects regeneration of plants resistant to kanamycin.

Free access

J. Kevin Parris, Darren H. Touchell, Thomas G. Ranney, and Jeffrey Adelberg

-topolin and its derivatives serve as replacement for benzyladenine and zeatin? Plant Cell Tissue Organ Cult. 90 15 23 Bi, Y. Gao, S. Qiao, Y. Liu, S. Cao, H. Zhang, H. 2002 Effect of plant growth regulator on tissue culture of Mongolian white yulan J. Hebei

Free access

Xiaoling Cao, Freddi A. Hammerschlag, and Larry Douglass

As part of a program to improve highbush blueberry (Vaccinium corymbosum L.) cultivars via tissue culture and genetic engineering, studies were conducted to determine optimum conditions for organogenesis from leaf explants of the previously recalcitrant cv. Bluecrop. The effects of a pretreatment, growth regulators, and age of explant source on shoot organogenesis were investigated. A maximum of 98% explants regenerated shoots with a mean of 11 shoots per leaf explant after 62 days when explants of 2-week-old shoot cultures were incubated on the following regime: pretreatment medium #1 containing 5 μm TDZ and 2.6 μm NAA for 4 days, pretreatment medium #2 containing 7 μm zeatin riboside and 2.6 μm NAA for 3 days, regeneration medium containing 1 μm TDZ for 6 weeks, and last on medium without growth regulators for 10 days. No shoot regeneration occurred if explants were incubated without exposure to pretreatment prior to incubation on regeneration medium. There were no significant differences in percentage of regeneration or the number of shoots regenerating per explant from leaf explants derived from either 1-, 2-, or 3-week-old shoot cultures. Shoot production per explant on regeneration medium containing 1 μm TDZ was about three times that on 0.5 μm TDZ or 20 μm zeatin riboside, and nine times that on 5 μm TDZ. Chemical names used: 1-phenyl-3-(1,2,3-thiadiazol-5-yl)urea (thidiazuron, TDZ); 9-(β-D-ribofuranosyl)-6-(4-hydroxy-3-methyl-but-2-enylamino)purine (zeatin riboside).

Free access

Ben A. Bergmann, Ying-Hsuan Sun, and Anne-Marie Stomp

Information was obtained concerning appropriate bud harvest time and nitrogen source to be used in the tissue culture of Fraser fir [Abies fraseri (Pursh) Poir] apical buds from 2-year-old seedlings. April was the preferred time to harvest buds for culture, as summer buds had a high contamination frequency, and fall and winter buds did not develop well. Shoot elongation of buds collected in April (1.6 cm) was more than twice that of buds collected in February (0.7 cm) after 100 days in culture; during the same period, shoot fresh mass increased 5-fold (0.21 g in April, 0.04 g in February). Inclusion of a nitrate source reduced the frequency of bud browning, and glutamine was superior to ammonium as a source of reduced nitrogen. Litvay's basal medium containing 10 mm glutamine and 10 mm nitrate was the best nitrogen source combination tested when considering bud browning frequency and shoot fresh mass and length after 100 days in culture.