Search Results

You are looking at 101 - 110 of 4,148 items for :

  • "plant growth" x
  • Refine by Access: All x
Clear All
Full access

Tongyin Li, Guihong Bi, Genhua Niu, Susmitha S. Nambuthiri, Robert L. Geneve, Xueni Wang, R. Thomas Fernandez, Youping Sun, and Xiaojie Zhao

studied in recent years as potential alternatives to traditional plastic containers. Biocontainers may increase, decrease, or have no effect on plant growth, depending on plant species or container type ( Beeks and Evans, 2013a ; Evans and Hensley, 2004

Full access

Martin J. Bukovac

The importance of spray application and the role of spray additives are reviewed in reference to increasing the effectiveness of plant growth regulators (PGR). The spray application process is composed of a number of interrelated components, from formulation of the active ingredient into a sprayable, bioactive solution (emulsion/suspension), to atomization, delivery, retention, and penetration into the plant tissue. Each of these events is critical to performance of the PGR. Also, each can be affected by spray additives, particularly adjuvants, which may be incorporated in the formulation of the active ingredient or added to the spray mixture. The role of the individual components and effects of spray adjuvants, particularly surfactants and fertilizer adjuvants, on the component processes are discussed.

Free access

Juan Carlos Díaz-Pérez and James E. Hook

excess) and calcium fertilization on plant growth, fruit yield, and fruit quality. Material and Methods Study site. Experiments were conducted at the Horticulture Farm, University of Georgia, Tifton, GA. The farm is located at an altitude of 108 m above

Free access

D.A. Raworth and S.J. Clements

Red raspberry (Rubus idaeus L. cv. Willamette) primocanes were artificially defoliated to various degrees and at two dates in each of 2 years to simulate defoliation caused by the twospotted spider mite (Tetranychus urticae Koch). The effect on primocane diameter, lateral length, yield and four yield components was determined. When defoliation occurred evenly along the length of the primocanes, and all floricanes and excess primocanes were removed in early Aug. 1989, yield was reduced 26% at 25%, 50%, and 75% defoliation and 55% at 100% defoliation compared with nondefoliated controls. The number of canes per stool, number of fruit per lateral, and weight per fruit were reduced when defoliation occurred earlier, in August rather than September, but the number of laterals per cane increased with early defoliation. The effect of increasing defoliation on plant growth and yield was generally nonlinear. When defoliation occurred in sections along the lower 2 m of all primocanes, and all floricanes and excess primocanes were removed in Nov. 1992, no significant differences in yield or three yield components were detected. The effects of primocane defoliation are not necessarily predictable, so T. urticae should be controlled before mite-induced defoliation occurs.

Full access

Amanda Wiberg, Richard Koenig, and Teresa Cerny-Koenig

There is extensive variability in physical and chemical properties among brands of retail potting media. The purpose of this study was to assess variability in seed germination and plant growth responses among and within brands. Twenty-four different brands of media, and multiple bags of five brands, were purchased at nine retail stores. Tomato (Lycopersicon esculentum) seeds were germinated in 11 different brands of media and in media from different bags of four of the same brands. Marigold (Tagetes erecta) and petunia (Petunia×hybrida) were grown to flowering in 10 brands of media. Germination varied significantly among media brands and among bags of one of the brands. Plant performance also varied significantly, with several of the brands producing plants with few flowers, long times to flowering, and low shoot and root dry weights even though all treatments received uniform applications of a complete fertilizer solution three times per week. Few relationships could be discerned between individual physical and chemical properties of the media and plant performance. Results indicate improvements in quality among brands and quality control within brands are needed in the retail potting media industry. Quality assessment tools emphasizing plant performance could improve overall media quality.

Full access

M.W. Duck, B.M. Cregg, R.T. Fernandez, R.D. Heins, and F.F. Cardoso

Tabletop Christmas tree growers whose greenhouse-grown conifers have undesirable shoot growth may alleviate this problem by applying plant growth retardants (PGRs). Some of the most common PGRs in the horticulture industry were evaluated to determine their effectiveness in controlling plant height: ancymidol at 100 μL·L-1 (ppm), daminozide at 5000 μL·L-1, paclobutrazol at 60 μL·L-1, chlormequat at 1500 μL·L-1, uniconazole at 15 μL·L-1, and ethephon at 500 μL·L-1 compared to a nontreated control. The following conifer species were used: colorado blue spruce (Picea pungens), black hills spruce (P. glauca var. densata), serbian spruce (P. omorika), noble fir (Abies procera), grand fir (A. grandis), fraser fir (A. fraseri), concolor fir (A. concolor), arborvitae (Thuja occidentalis), port orford cedar (Chamaecyparis lawsoniana), and douglas-fir (Pseudotsuga menziesii). Chlormequat was the only PGR that caused phytotoxicity and damage to the foliage was minimal. Noble fir, douglas-fir, colorado blue spruce, and arborvitae were unaffected by any PGR treatment. Daminozide reduced growth of port orford cedar and concolor fir; uniconazole reduced growth of black hills spruce and serbian spruce; paclobutrazol reduced growth of fraser fir; and ethephon reduced growth of grand fir.

Free access

B.J. Johnson

A field experiment was conducted over 2 years to determine the effects of treatment dates with plant growth regulators (PGRs) on performance of `Tifway' bermudagrass [Cynodon transvaalensis Burtt-Davy] × [C. dactylon (L.) Pers.]. For flurprimidol at 0.84 kg·ha-1, the highest injury occurred from 16 or 28 June application in 1987 and from 17 May or June application in 1988. The injury was similar from treatment dates with flurprimidol + mefluidide or paclobutrazol + mefluidide. The PGRs were applied over a longer period in 1987 than 1988 without affecting vegetative suppression of `Tifway' bermudagrass. However, in 1988, the suppression from the 17 May treatment was equal to or better than that obtained when treatment dates were delayed until 1 June or later. Chemical names: α-(1 -methylethyl)- α -[4-(trifluoromethoxy)phenyl]-5-pyrimidinemethanol (flurprimidol); N -[2,4-dimethyl-5-[[(trifluoromethyl)sulfonyl]amino]phenyl]acetamide (mefluidide); (±)-(R*R*) β -[(4-chlorophenyl)-methyl]- α -(1,1-dimethylethyl)- 1H -1,2,4-triazole- 1-ethanol (paclobutrazol).

Full access

Duane W. Greene

Plant growth regulators (PGRs) play an important commercial role in horticulture. Although often expensive, they are generally used on high value crops where the costs can be retrieved through the increased value their usage creates in a given crop. The impetus for development of new PGRs is generally initiated by the agrochemical industry where they perceive a need that has a profit potential, whereas the motivation for the development of a PGR by researchers is largely to aid the industry they serve. University and government researchers initially follow a prescribed protocol early in the development process, but once they have gained personal experience with a PGR, further research is often guided by personal observations and keen technical insight. During the development and evaluation process, university and government researchers are optimistic, and negative effects are generally viewed as challenges, that can and will be overcome. Discussion and effective communication are critical components in the overall development of a new PGR. Researchers generally exchange information very freely, unless restricted from doing so by a nondisclosure or other contract agreement. The underlying goal for university and government researchers is to get approval of a new PGR product and/or use that will allow growers to produce a high quality product for consumers with an improved profit margin for growers. Development of new PGRs is undergoing major change that unfortunately will lead to the development and registration of fewer compounds. There are not as many agrochemical companies, there are a decreasing number of university and government researchers, and diminishing funds available to support the development of new PGRs.

Free access

Manjula S. Bandara, Karen K. Tanino, and Doug R. Waterer

Seed potato growers seek to maximize yields of desirable sized tubers. This study examined how foliar applications of plant growth regulators influence yields of drop or single-cut seed tubers under field conditions. In 1993, paclobutrazol (PTZ; 300, 450, and 600 mg·liter–1), kinetin (KIN; 10 and 20 mg·liter–1), and methyl jasmonate (MJ; 10–7, 10–6, 10–5, and 10–4 M) were applied to `Norland' (NOR) and `Russet Burbank' (RB) potatoes. In 1994, PTZ (300 mg·liter–1), KIN (both rates), and MJ (10–7 and 10–6 M) treatments were eliminated, and GA3 at 250 mg·liter–1 or KIN at 20 mg·liter–1 was applied to some of PTZ treatments. In 1994, the cultivar Shepody (SH) also was included. Plants were treated at two growth stages; NOR (1993), RB (1993 and 1994), and SH (1994) were treated when tubers were <10 mm or <20 mm in diameter. NOR (1994) was treated at stolon initiation (no tubers) or early tuber initiation (<8 mm in diameter). PTZ had no effect on seed tuber (25–50 mm in diameter) yield in NOR in either season. PTZ increased seed tuber number (STN) in RB by 29% to 40% and in SH by 57% to 70% over the controls. KIN had no effect on STN in any cultivar. MJ had no effect on STN in NOR (1993) or in RB in either season or in SH in 1994. In 1994, the highest rate of MJ (10–4 M) increased STN in NOR by 40% over the controls. GA3 had no beneficial effect on STN when applied after PTZ. This study suggests that, under field conditions, PTZ can increase seed tuber production in RB and SH while MJ was effective in NOR potatoes.

Free access

Edward W. Bush, Wayne C. Porter, Dennis P. Shepard, and James N. McCrimmon

Field studies were performed on established carpetgrass (Axonopus affinis Chase) in 1994 and 1995 to evaluate plant growth regulators (PGRs) and application rates. Trinexapac-ethyl (0.48 kg·ha-1) improved turf quality and reduced cumulative vegetative growth (CVG) of unmowed and mowed plots by 38% and 46%, respectively, in 1995, and suppressed seedhead height in unmowed turf by >31% 6 weeks after treatment (WAT) both years. Mefluidide (0.14 and 0.28 kg·ha-1) had little effect on carpetgrass. Sulfometuron resulted in unacceptable phytotoxicity (>20%) 2 WAT in 1994 and 18% phytotoxicity in 1995. In 1995, sulfometuron reduced mowed carpetgrass CVG 21%, seedhead number 47%, seedhead height 36%, clipping yield 24%, and reduced the number of mowings required. It also improved unmowed carpetgrass quality at 6 WAT. Sethoxydim (0.11 kg·ha-1) suppressed seedhead formation by 60% and seedhead height by 20%, and caused moderate phytotoxicity (13%) in 1995. Sethoxydim (0.22 kg·ha-1) was unacceptably phytotoxic (38%) in 1994, but only slightly phytotoxic (7%) in 1995, reduced clipping yields (>24%), and increased quality of mowed carpetgrass both years. Fluazasulfuron (0.027 and 0.054 kg·ha-1) phytotoxicity ratings were unacceptable at 2 WAT in 1994, but not in 1995. Fluazasulfuron (0.054 kg·ha-1) reduced seedhead height by 23% to 26% in both years. Early seedhead formation was suppressed >70% when applied 2 WAT in 1994, and 43% when applied 6 WAT in 1995. The effects of the chemicals varied with mowing treatment and evaluation year. Chemical names used: 4-(cyclopropyl-x-hydroxy-methylene)-3,5 dioxo-cyclohexane-carboxylic acid ethyl ester (trinexapac-ethyl); N-2,4-dimethyl-5-[[(trifluoro-methyl)sulfonyl]amino]phenyl]acetamide] (mefluidide); [methyl 2-[[[[(4,6-dimethyl-2-pyrimidinyl) amino]carbonyl] amino] sulfonyl]benzoate)] (sulfometuron); (2-[1-(ethoxyimino)butyl-5-[(2-ethylthio)propyl]-3-hydroxy-2-cyclohexen-1-one) (sethoxydim); 1-(4,6-dimethoxypyrimidin-2yl)-3-[(3-trifluoromethyl-pyridin 2-yl) sulphonyl] urea (fluazasulfuron).