Search Results

You are looking at 101 - 110 of 2,584 items for :

Clear All

In recent years the use of native plant materials for conservation and revegetation projects has received increased awareness and interest. The National Plant Materials Center (NPMC), in cooperation with the USDI-National Park Service, is involved in the revegetation of disturbed areas within our National Parks using native herbaceous and woody plants. This involves the collection of germplasm from selected niches within the Parks, an increase in seed and production of transplants, and reestablishment of native communities in natural areas.

One major focus of the program is to develop technology for improving native plant propagation and production, which should make the use of native plants more viable in the commercial sector. Germination of species of Tridens, Dichanthelium, Danthonia, Helianthus, Schizachyrium, and Andropogon has been improved to 80-95% by altering the germination environment. Production of these species in plugs has also been streamlined to maximize space efficiency and provide cost-effective methods for planting native grasses and wildflowers.

Free access

should be taken under consideration before applying green roof systems in Mediterranean regions are water availability, particularly in those areas with semiarid climate, biodiversity, and local character preservation. The use of native xerophytes in

Free access

Ten plant species native to southeast Alaska and surrounding regions were selected based on their value as ornamentals, food crops, disturbed site revegetation, and traditional Native American uses. Between 2003–05, seeds, cuttings, rhizomes, and bulbs from the 10 native plant species were collected in Sitka, Alaska, and propagated according to existing plant propagation protocol for each species. The most successful propagation method for each species was determined from field trials. This information was provided through workshops and Extension publications to gardeners in southeast Alaska and other parts of Alaska. The purpose of this project was to enhance growing local native plants as ornamentals, food crops, in disturbed site revegetation and for traditional Native American uses, particularly among native elders unable to collect these plants in the wild. A secondary purpose was to create a market for native plants in southeast Alaska and spawn a cadre of local cottage market gardeners to grow native plants for existing small nurseries. The 10 species selected included: Cornus canadensis, C. stolonifera, Empetrum nigrum, Fritillaria camschatcensis, Linnaea borealis, Oplopanax horridus, Rubus chamaemorus, Vaccinium parvifolium, Vaccinium ovalifolium, and Viburnum edule.

Free access

Oenothera biennis, common evening primrose, is grown commercially for its seed, which contains high levels of gamma-linolenic acid (GLA), a fatty acid with pharmaceutical and dietary importance. Other native species of Oenothera are being evaluated for the presence of GLA in their seed and their potential as a commercial source of GLA. Native evening primrose species have shown slow emergence and low germination percentages. Studies were conducted to determine the effects of chilling, scarification, and priming on germination of seed for six species of native evening primrose. Overall, seed germination was improved by seed treatments. However, responses to the various treatments differed among species.

Free access

Hundreds of perennial plant species native to the midwestern United States have potential as ornamentals, but information on how best to use such plants in the landscape remains scarce. Many horticulturists are looking for species that perform well under low-maintenance conditions and that also attract and benefit desirable fauna, such as butterflies and birds. While many of our native plants may fit into this category, not all such species will meet aesthetic criteria for home landscapes. Some native species respond to seasonal changes in temperature and rainfall by browning or going dormant. Others have very specific site requirements for moisture, soil, and humidity that may be difficult to meet in an urban landscape, or their size, growth habit, or other characteristics may make them aesthetically undesirable in the typical home landscape. This study evaluated the performance of 67 plant taxa native to the midwestern United States selected for their promising potential in a low-maintenance landscape situation.

Full access

Recent trade journals and magazines report a widespread and increasingly popular trend encouraging the use of native plants in the landscape. A random sample of 528 Southern Nurserymen's Association 1996 members were surveyed to determine 1) if they had perceived the trend reported in trade and consumer publications towards the selection of native plants, and 2) if there are consistencies in demographic characteristics and aspects of advertising plans among the respondents. Forty-two percent of those surveyed responded. Respondents perceived an overall interest in native plants higher in 1996 than in 1991. Almost half of the respondents had increased quantity and variety of native plants in response to their perceptions; 28% had not responded in any way. Plant professionals who had responded to the perceived trend did not differ significantly from those who had not on selected demographic characteristics. Selected aspects of advertising did not differ significantly except for the extent to which consumer magazines were used as references for marketing strategies.

Free access

Plants have been introduced into the United States intentionally as well as unintentionally as seeds and weeds. Technological advances, a mobile society, and our curiosity and desire to improve our landscapes have led to an ever-increasing invasive movement. These alien plants can jeopardize native populations, alter ecosystems, alter fire and water regimes, change the nutrient status, modify habitats, and cause significant economic harm. Today's public is unaware of the danger some non-native plants species pose to natural areas, thereby contributing to the lack of control for non-native invasive plants. This study looked at the knowledge and attitudes of Texas Master Gardeners as related to invasive species commonly used in landscaping. A web survey was made available to all Texas Master Gardeners that included pictures of plants along with their common and scientific names. Participants were asked to identify which they thought were invasive and contribute information regarding their knowledge of non-native invasive plants. Each of the invasive plants shown is on both the federal and the Texas Invasive Plant lists. Inquires were made concerning the occurrence of these plants in the participants' personal landscape and communities and their perceptions of each plant as an invasive threat. The purpose of the study is to determine if a relationship exists between knowledge, attitudes and perceptions of the participant and the occurrence of non-native invasive plants in the landscape. The results of this study will help determine factors that contribute to the lack of control for non-native invasive plants.

Free access

Bringing Nature Home: How Native Plants Sustain Wildlife in Our Gardens. Douglas W. Tallamy. 2007. Timber Press, Inc., Portland, OR. 288 pages, with illustrations. $27.95, Hardcover. ISBN-13:978-0-88192-854-9. Bringing Nature Home is the first

Full access

We propose the name Exacum Styer Group for an interspecific population derived from several Sri Lankan Exacum taxa. Confirmation of hybrid status was determined by the appearance of either unique trait combinations or intermediate forms of traits originally represented by individual native taxa. Through 12 sexual generations, the proposed cultivar-group continues to exhibit these unique traits and now forms a cohesive fertile population.

Free access

The issue of invasive plants has become a concern to a variety of groups, including environmentalists, policymakers, and nurserymen. Although many surveys of invasive plants have been made, little research on the biology of hybridization has been conducted. Bittersweet (Celastrus) species serve as a good model system to test the effects of interspecific hybridizations since native and introduced species are found in the U.S. The American bittersweet (Celastrus scandens L.) is a deciduous climbing or twining shrub native to eastern and central North America. Although the bark has been used for medicinal purposes, the plant is cultivated as a nursery crop primarily for its bright red berries. In its natural habitat, native bittersweet is also an important source of food and cover for wildlife. Over the past several decades, populations of native bittersweet have declined to such low levels that some states are considering listing it as a threatened species. One reason for the rarity of American bittersweet in the wild is thought to be competition and possibly hybridization with an aggressive introduced species, oriental bittersweet (Celastrus orbiculatus Thunb.), which was introduced from Asia into the U.S. in 1860 as an ornamental. This plant can form dense, tangled, impenetrable thickets or climb small trees to girdle and smother them. It has been seen in at least 21 states since it was first recorded as an escape plant in 1912. Our objective was to determine whether oriental bittersweet can hybridize with native bittersweet, thus contributing to the loss of native populations in the United States. We performed controlled pollinations using C. scandens as the female parent and C. scandens or C. orbiculatus as the male parent. Although the intraspecific pollinations resulted in significantly more germinating seedlings than the interspecific crosses, the seedlings from the interspecific crosses had less seed dormancy and were more vigorous and more quick to vine than the intraspecific seedlings. These results indicate that the decline of the American bittersweet may be due to interspecific hybridizations with the invasive introduced species.

Free access