Search Results

You are looking at 101 - 110 of 342 items for :

  • "leaf water potential" x
  • Refine by Access: All x
Clear All
Free access

Amos Naor

Interrelations between water potential and fruit size, crop load, and stomatal conductance were studied in drip-irrigated `Spadona' pear (Pyrus communis L) grafted on quince C (Cydonia oblonga L.) rootstock and growing in a semi-arid zone. Five irrigation rates were applied in the main fruit growth phase: rates of 0.25, 0.40, 0.60, 0.80, and 1.00 of “Class A” pan evaporation rate. The crop in each irrigation treatment was adjusted to four levels (200 to 1200 fruit per tree) by hand thinning at the beginning of June 1999. The crop was harvested on 1 Aug. 1999, and fruit size was determined by means of a commercial sorting machine. Soil, stem, and leaf water potentials and stomatal conductance were measured during the season. Crop yield was highly correlated with stem and soil water potentials. The highest midday stem water potential was lower than values commonly reported for nonstressed trees, and was accompanied by high soil water potential, indicating that the maximal water absorption rate of the root system under those particular soil conditions was limited. Stomatal conductance was highly correlated with leaf water potential (r 2 = 0.54), but a much better correlation was found with stem water potential (r 2 = 0.80). Stomatal conductance decreased at stem water potentials less than -2.1 MPa. Both stem water potential and stomatal conductance were unaffected by crop load under a wide range of irrigation rates.

Free access

Jane M. Petitte and Douglas P. Ormrod

Abbreviations: CSTR, continuously stirred tank reactor; PLA, planar leaf area; π osmotic potential; ψ leaf , leaf water potential. 1 Current address: 620 Shadywood Lane, Raleigh, NC 27603. This paper is a portion of a thesis submitted by J.M.P. in

Free access

J. Ryan Stewart, Roger Kjelgren, Paul G. Johnson, and Michael R. Kuhns

Although transplanted trees typically establish and grow without incident in frequently irrigated turfgrass, their performance in precisely irrigated turfgrass in an arid climate is not known. We investigated the effect of precision irrigation scheduling on growth and water relations of balled-and-burlapped littleleaf linden (Tilia cordata Mill. `Greenspire') planted in buffalograss (Buchloë dactyloides [Nutt.] Engelm. `Tatanka') and kentucky bluegrass (Poa pratensis L.). Over 2 years, trees in turfgrass were irrigated either by frequent replacement based on local reference evapotranspiration, or precision irrigated by estimating depletion of soil water to the point of incipient water stress for each turfgrass species. Predawn leaf water potential and stomatal conductance of trees were measured during first-year establishment, and predawn leaf water potential was measured during a mid-season water-deficit period during the second year. Trunk diameter growth and total tree leaf area were measured at the end of each year. Values of predawn leaf water potential and stomatal conductance of trees in precision-irrigated buffalograss were lower (–0.65 MPa, 25.3 mmol·m–2·s–1) than those of trees in the other treatments near the end of the first growing season. The longer interval between precision irrigations resulted in mild water stress, but was not manifested in growth differences among trees across treatments during the first season. During the water-deficit period of the second year, there was no evidence of stress among the trees regardless of treatment. At the end of the second season, total leaf area of trees grown in precision-irrigated kentucky bluegrass (1.10 ± 0.34 m2) was 46% of that of trees grown in buffalograss (2.39 ± 0.82 m2) that were irrigated frequently. Trunk diameter growth of trees in frequently irrigated kentucky bluegrass (1.91 ± 2.65 mm) was 29% of that of the trees grown in buffalograss (6.68 ± 1.68 mm), regardless of irrigation treatment, suggesting a competition effect from kentucky bluegrass. We conclude that frequent irrigation of balled-and-burlapped trees in turfgrass, particularly buffalograss, is more conducive to tree health during establishment than is maximizing the interval between turfgrass irrigation. Regardless of irrigation schedule, kentucky bluegrass appears to impact tree growth severely during establishment in an arid climate.

Free access

Timothy E. Elkner, J. A. Barden, M. M. Kushad, and D. D. Wolf

Fruiting spurs (`Red Prince Delicious') (RD) and shoots (`Sundale Spur Golden Delicious') (CD) with three leaf:fruit ratios and comparable nonfruiting spurs and shoots were girdled on 7 September 1988. An interaction between fruiting status and time existed for most parameters measured on both cultivars while there was no effect of leaf:fruit ratio. At 1 day after treatment (DAT) few differences existed due to fruiting status on either cultivar. At 8 DAT with RD and at 4 and 8 DAT with GD, Pn, transpiration (Tr), leaf water potential (ψ L), and nonreducing sugars were greater on fruiting than nonfruiting spurs and shoots while leaf resistance (RL), SLW, and starch were lower on fruiting spurs. In nonfruiting spurs and shoots Pn, Tr, and ψL tended to decrease while RL and SLW increased with time whereas m fruiting spurs and shoots most parameters remained constant. Total nonstructural carbohydrates, reducing sugars, and starch were greater in nonfruiting than fruiting spurs and shoots.

Free access

Jerriann Ernstsen, Larry Rupp, and Ray Brown

Typically, dormant seedlings are transplanted when revegetating disturbed lands to prevent transplant shock triggered by water stress. It may be possible to transplant nondormant seedlings by inducing drought-tolerant acclimation responses such as solute accumulation. Artemisia cana and Agropyron intermedium seedlings were subjected to three different water stress preconditioning treatments. After conditioning, seedlings were dried down in their containers until leaf senescence, or were transplanted to disturbed land sites. Leaf water potential components and relative water content were measured. Following treatments, water relations parameters of preconditioned seedlings were not markedly different from controls in either species. At the end of the final dry-down, water stress preconditioning had not induced active or passive solute accumulation, prolonged leaf survival during lethal drought conditions, or differences in transplant survival under the experimental conditions of this study.

Free access

Michael A. Arnold., G. Kim Stearman, and Reed W. Cripps

Rooted cuttings of Acer rubrum `Red Sunset' grown in containers treated on interior surfaces with 100 g Cu(OH)2/liter white interior latex paint, or left untreated, were root pruned or not root pruned and planted in a field plot. A pseudo-bareroot treatment, trees from untreated containers shaken free of media, was included. Height (115 vs. 108 cm) and caliper (12.0 vs. 10.7 mm) at transplant was slightly greater for copper treated trees than for untreated trees. Leaf water potentials (LWP) at transplant were similar for all treatments. Mid-day LWP of trees transplanted from untreated containers tended to be lower than that of trees grown in copper treated containers at days 3, 14, 28, and 53 after transplant. Pseudo-bareroot trees had the most negative mid-day and pre-dawn LWP through day 92. Soil water potentials were from -0.01 to -0.03MPa.

Free access

F. Takeda, M. Wisniewski, and D. M. Glenn

In previous work no difference was found in leaf water potential or solute potential between young guttating leaves and older non-guttating leaves of the same plant. This suggested that the absence of guttation in older leaves was associated with a plant resistance component in the hydathodes. Hydathodes of young, folded leaves contained water pores with various apertures and no signs of occlusion.. In expanded, young leaves, production of epicuticular waxes and excretion of some substance through the pores was observed in the hydathode region. By the time leaves had fully expanded the hydathodes had become brownish. The combination of wax deposition and excreted substance had formed plates of solid material covering water pores. These observations suggest that deposition of substances on top of pores contribute to occlusion of water pores in old leaves.

Free access

Long-Xi Yu, Ann. F. Greer, and Zohreh Tabaeizadeh

We have carried out a comparative study on chitinase gene expression and enzyme activity in Lycopersicon chilense (a drought-tolerant wild tomato) and L. esculentum under water stress. Both enzyme assay and Northern blot analysis revealed that chitinase expression was differentially induced by drought among the different genotypes. Higher induction of chitinase was found in tolerant species compared to the sensitive one. Among genotypes examined, L. chilense LA2747 presented the highest level of the chitinase induction, while the lowest level was found in L. esculentum HR86. Leaves of drought-stressed plants showed the highest expression and roots showed the lowest, with stems being intermediate. Chitinase activity was detected in flowers of both drought-stressed and control plants. The measurement of leaf water potentials of different genotypes revealed a correlation between drought tolerance and the level of chitinase expression during water stress. Our results suggest that the chitinase might be involved in drought tolerance of L. chilense.

Free access

Robert M. Frymire and Janet C. Cole

Uniform rooted cuttings of pyracantha (Pyracantha coccinea M.J. Roem. 'Lalandei') were potted into 3.8 liter containers in a pine bark:sand medium. Plants were treated with a medium drench at 0.5 mg ai per container, or a foliar spray at 150 mg ai per liter, or no uniconazole. Plants also were exposed to one of three irrigation regimes: nonstressed, stressed or acclimated. Uniconazole had little effect on leaf water potential, osmotic potential, transpiration or leaf conductance. The uniconazole drench treatments reduced plant growth and increased N, Ca, and Mn concentrations in the leaves. Foliar applications had less effect on plant growth and elemental content Acclimated and stressed plants had lower water and osmotic potentials, transpiration rates and leaf conductance than nonstressed plants on the final day of the stress cycle. Acclimated plants had higher levels of N and Mn with lower levels of Zn in the leaves than either stressed of nonstressed plants.

Free access

Beth Jez Lawrence and Jayne M. Zajicek

Sap flow rates of three Cercis spp. exposed to supraoptimal root-zone temperatures were characterized in a controlled environment chamber using a water bath to control temperatures. Flow rates of sap in the xylem were measured every 15 sec. and averaged over 15 min. intervals. Sap flow measurements were correlated to root-zone temperatures recorded during the same time intervals. Whole plant transpiration was measured gravimetrically. Root-zone temperatures were maintained at 22C for three consecutive 24-hr cycles and then increased to 45C for an additional three 24-hr periods. All plants, regardless of species, had reduced sap flow patterns when exposed to high root-zone temperatures. Plants maintained at a constant temperature of 22C showed no extreme fluctuations in sap flow rate. Stomatal conductance rates and leaf water potentials showed similar trends to whole plant transpiration.