Search Results

You are looking at 101 - 110 of 459 items for :

  • Refine by Access: All x
Clear All
Free access

Usha Rani Palaniswamy, Richard McAvoy, and Bernard Bible

Omega-3 fatty acids (O3FA) are essential for normal human growth, development, and disease prevention. Purslane (Portulaca oleraceae L.) is an excellent source of the O3FA α-linolenic acid (LNA)—with higher concentrations than any green leafy-vegetable examined to date—and is being considered for cultivation (by USDA-ARS) in an effort to improve the balance of essential fatty acids in the western diet. Twenty-fi ve-day-old seedlings of both a green-leafed and a golden-leafed type of purslane were transplanted into a closed hydroponic system. Nitrogen, at 200 ppm, was provided as NO3 and NH4 forms to yield NO3: NH4 ratios of 1:0, 0.25:0.75, 0.5:0.5, and 0.75:0.25. Treatments were arranged in a randomized complete-block design with five replications. The experiment was repeated. Young, fully expanded leaves were harvested 18 days after treatment initiation, frozen (–60°C), and then analyzed for fatty acids using gas chromatography. Although the two types of purslane did not differ in LNA concentration, the green-leafed purslane produced greater total dry mass than the golden-type. On a leaf dry mass basis, plants grown with a NO3:NH4 ratio of 0.5:0.5 produced 241% and 53% greater LNA than plants grown with NO3:NH4 ratios of 1:0 and 0.75:0.25, respectively. Plants grown with NO3:NH4 ratios of 1:0 and 0.25:0.75 produced similar leaf LNA concentrations. Total dry mass was not affected by the nitrogen treatments.

Free access

Francisco Radillo-Juárez*, Marcelino Bazán-Tene, Jaime Molina-Ochoa, and Edgar Damián Rolón-Vejar

The production of `Jalapeño' hot pepper has been increased in the last 10 years in about 6.21% during the period between 1992-2003, with a growing rate of 72%. In Mexico, is an important produce, because it is considered part of the traditional Mexican diet as well as its high productive level. One of the most frequent problems in this crop is the low production of fresh fruits caused by an inadequate fertilization. The objective of this research was to evaluate the effect of four fertilization formulas on the yield of fresh fruit of hot pepper variety Jalapeño cultivar Grande under irrigation conditions The evaluated formulas were (N-P-K-S): 1) 58-51-35-12 (control); 2) 78-68-46-16; 3) 97-85-58-20; and 4) 117-102-69-24. Treatments were distributed under a completely randomized block design with four replications. The formula 117-102-69-24 showed the highest values in the plant height and number of fruits with 62.5 cm, and 48 fruits, respectively. This formula also showed the highest values on equatorial and longitudinal diameters, and fruit weight with 3.36 cm, 11.26 cm, and 33.66 g, respectively. The total yields per plant and per hectare was 1.54 kg; and 38.22 t was obtained with the formula 117-102-69-24. The formula with the higher units of each element showed the best performance and exhibited the highest yield of fresh hot pepper, it was more productive than the control treatment commonly used by the hot pepper growers in Colima.

Free access

Kirk D. Larson

Replant soil fumigation with mixtures of methyl bromide (MeBr) and chloropicrin (trichloronitromethane) is a standard practice for pest and disease control in fruit crop nurseries in California. The proposed phase-out of MeBr by the year 2001 requires that alternative soil sterilants be studied for nursery use. Therefore, on 5 April, 1993, three preplant soil treatments were applied to new strawberry ground: 1) MeBr/chloropicrin (67:33) at 392 kg/ha: 2) chloropicrin, a possible MeBr substitute. at 140 kg/ha: and 3) nonfumigation. The experimental design was a RCB: there were two plots (each 10′ × 15′) for each of two cultivars (`Chandler' and `Selva') for the 3 soil treatments in each of 3 blocks. Mother plants were planted 26 April, and plots were machine-harvested in October, 1993. All plants from each plot were uniformly graded, after which mean stolon yield per mother plant, mean crown diameters, and crown and root dry wts were determined. Cultivar effects and cultivar × treatment interactions were not observed, so data for the two cultivars were pooled. Stolon production per mother plant was greatest for trt 1 (18.56 stolons), intermediate for trt 2 (15.75 stolons), and least form 3 (7.89 stolons). For trt 3, crown dieters. and crown and root dry wts were reduced relative to those of trts 1 or 2. Stolons from all trts were planted in a fruit production field on 13 October, 1993. After two months, canopy diameters were greatest for plants from trt 1 (27.1 cm), intermediate for plants from trt 2 (26.2 cm) and least for plants from trt 3 (24.9 cm). The results indicate that, compared to standard soil fumigation with MeBr/chloropicrin. small, but significant, reductions in runner production and plant vigor can be expected following nursery soil fumigation with intermediate rates of chloropicrin.

Free access

Allison E. Stewart, Debra J. Carpenter, Vincent R. Pantalone, and Carl E. Sams

Consumer interest in Edamame (edible soybean) is increasing due to reported health benefits associated with diets high in soy. The purpose of this study was to compare four varieties of edible soybean grown at four plant spacings on three planting dates. The lines were grown at the Plateau Research and Education Center in Crossville, Tenn. They were analyzed for horticultural traits and isoflavone content. All lines were at the R6 stage. Fresh weight of pods, weight of 200 pods per plot, the number of seeds per 200 pods, and the weight of 100 seeds were recorded from two-row plots (6.10 m x 1.52 m). A significant (P < 0.001) difference was found for fresh weight among planting dates. The May planting had the highest mean fresh weight (3118 g/plot), followed by the June (3068 g/plot) and July (2131 g/plot) dates. The weight per 100 seeds was significantly different (P < 0.001) for planting date and genotype. May seed weight was highest at 49 g, followed by June at 45 g, and July at 42 g per 100 seeds. `Gardensoy-43' was the highest-yielding variety, with a mean of 3253 g/plot. It was followed by `TN00-60' and `TN03-349', with mean fresh weights of 2730 and 2723 g/plot, respectively. The line `TN5601T' had the lowest mean fresh weight of 2389 g/plot. Both fresh weight (P < 0.001) and weight per 100 seeds (P < 0.05) were significantly different among plant spacings. Twenty-six plants per meter within rows yielded the highest total fresh weight per plot (3071 g), but had the lowest mean weight per 100 seeds (43 g). Spacing three plants per meter within rows resulted in the highest weight per 100 seeds (48 g), but the lowest fresh weight per plot (2122 g). Isoflavone content will be measured for each variety, planting date, and spacing.

Free access

Oleg Daugovish and Michi Yamomoto

California leads national strawberry fruit production with annual value in Ventura County alone near $300 million. Bird damage to fruit routinely accounts for 3–5% losses and may exceed 50% in some fields. Conventional bird control tools have limited or no effect on fruit damage and may contribute to noise pollution. A four-site study at Oxnard, Calif., from Jan. to Apr. 2005 (highest value fresh market season) showed that release of Peregrine, Saker, or Barbary falcons in combination with helium balloon launching (site 4) in response to fruit damage reduced fruit damage from 80–90% to 15–20% after 1 week. When fruit damage increased again (>20%) a repeated 1-week daily program completely reduced fruit damage during the rest of the season. Falconry alone at site 2 (near man-made structures) for two consecutive days reduced fruit damage from 70–80% to 10–20%, however, at site 3, near giant reed, three weeks of daily releases did not eliminate the damage, but confined it to the strawberry beds adjacent to reed shelter (reducing overall damage from 100% to 25–50%). High frequency of release is likely unfeasible and destruction of shelter habitat may be justified. Falconry alone before damage occurrence (site 1) seemed to prevent fruit damage; however, lack of birds and fruit damage before, during, and after releases made it difficult to draw conclusions about the success of the preventive program. In April, no fruit damage occurred even during bird presence suggesting the change in their diet. The study showed that seed-eating birds were the main pests at Oxnard, Calif., and that trained falcons can disperse them, thus, reducing fruit damage. The success of falconry was site-specific and depended on proximity of suitable habitat and availability of food sources for pest birds.

Free access

Alexandra B. Napier, Kevin M. Crosby, and Soon O. Park

Muskmelons (Cucumis melo L.) play an important role in the American diet. Ranked as one of the top 10 most-consumed fruits by the USDA, cantaloupe melons have the highest amount of beta-carotene of all the ranked fruits. Beta-carotene, also called pro-Vitamin A, is an essential nutrient required for eye health, and may have the potential, as an antioxidant to reduce the risks associated with cancer, heart disease, and other illnesses. Breeding melons with increased levels of beta-carotene will benefit consumer health. Research has found phytonutrients are most bioavailable when consumed in their fresh form, rather than as vitamin supplements. The high level of beta-carotene found in some melons has a genotypic component, which may be exploited to breed melons high in beta-carotene. Molecular markers and marker-assisted selection (MAS) can be used to increase the efficacy of the breeding process, while lowering breeding costs. An F2 population was created using `Sunrise', the female parent, containing no beta-carotene crossed with `TAM Uvalde', a high beta-carotene variety. A field population consisting of 115 F2 individuals and a greenhouse population containing 90 F2 individuals were grown. The resulting fruit were screened phenotypically and ranked according to beta-carotene content. Chisquare values fit the previously reported model of a single dominant gene for presence of beta-carotene (orange-flesh) vs. absence (green or white flesh). A continuous distribution of beta-carotene concentrations from high to low suggested quantitative inheritance for this trait. Two eight-plant DNA bulks composed of either high or low beta-carotene F2 individuals were screened for polymorphic molecular markers using the amplified fragment-length polymorphism technique.

Free access

Chieri Kubota, Cynthia A. Thomson, Min Wu, and Jamal Javanmardi

Plants produce various phytochemicals that are of nutritional and medicinal value to humans. Phytochemicals having antioxidant capacity are drawing increased interest from consumers. Population studies among Americans have consistently demonstrated inadequate consumption of fruit and vegetables. Improving intake of fruit and vegetables has been a major public health effort for many years with minimal success. Given this, it seems opportunistic to consider other approaches to enhance the nutritional quality of the American diet. One plausible approach is the development of fresh produce containing a greater concentration of phytochemicals known to improve health, thus while consuming fewer servings of produce, Americans would still have significant exposure to health-promoting food constituents. Controlled environments provide a unique opportunity to modify the concentrations of selected phytochemicals in fruit and vegetables, yet practical information is limited regarding methods effective in optimizing antioxidant capacity. Our research at the University of Arizona Controlled Environment Agriculture Program has shown that application of moderate salt stress to tomato plants can enhance lycopene and potentially other antioxidant concentrations in fruit. The increase in lycopene in response to salt stress in the tomato fruit was shown to be cultivar specific, varying from 34% to 85%. Although the specific biological mechanisms involved in increasing fruit lycopene deposition has not been clearly elucidated, evidence suggests that increasing antioxidant concentrations is a primary physiological response of the plant to the salt stress. Another experiment showed that low temperature during postharvest increased antioxidant capacity of tomato fruit while it maintained the lycopene concentration. More detailed study in this area is needed including accumulation of antioxidant phytochemicals as affected by environmental conditions during the cultivation and the postharvest.

Full access

Salfina S. Mampa, Martin M. Maboko, Puffy Soundy, and Dharini Sivakumar

Beetroot (Beta vulgaris), commonly known as table beet, is used as a staple in the diet of many people through the consumption of the entire plant, leaf, and the root. The objective of this study was to assess the effects of nitrogen (N) application and leaf harvest percentage on the yield and quality of roots and leaves of beetroot. The treatment design was a randomized complete block design with five levels of N (0, 60, 90, 120, and 150 kg·ha−1) combined with three leaf harvest percentages (0, 30, and 50) and replicated three times. The first leaf harvest was initiated 35 days after transplanting (DAT) by removing the outer matured leaves and the second harvest occurred 80 DAT by removing all the leaves. The results showed increases in leaf and root yield with an increase in N application. Nitrogen application at 90 and 120 kg·ha−1 increased fresh leaf weight, leaf number, and fresh and dry root weight, including root diameter and length with the exception of leaf area which was significantly higher at 120 kg·ha−1 N. Magnesium and iron leaf content, and N root content were significantly improved by the application of 120 kg·ha−1 N. Leaf harvest percentage did not have a significant effect on leaf yield or leaf and root mineral content. However, dry root weight was significantly reduced by the 50% leaf harvest. Leaf harvest at 30% or 50% increased total protein content of the roots of beetroot, whereas an increase in N application decreased concentration of total proteins. Results demonstrate that leaf and root yield, as well as magnesium, zinc, and iron leaf content, increased with the application of 120 kg·ha−1 N, whereas 30% leaf harvest did not negatively affect root yield.

Free access

Ann Marie Connor, Chad E. Finn, and Peter A. Alspach

Antioxidant compounds absorbed from our diet are thought to have a role in preventing chronic diseases that result from oxidative damage. Berry fruit have high levels of antioxidants, and further increases in antioxidant activity (AA) might be possible through breeding. We determined the AA, total phenolic content (TPH), and fruit weight in 16 blackberry and hybridberry (Rubus L.) cultivars harvested in New Zealand and Oregon in 2002 and 2003, to assess genetic and environmental variation. Both AA and TPH varied significantly between years within location, but not among cultivars or between locations per se. However, cultivar interactions with both location and year within location contributed to variation in both variates. In contrast, both cultivar and location contributed to variation in fruit weight, but years within location did not. However, the cultivar × year within location interaction was significant for this trait. Variance component distributions confirmed that cultivar and location effects together contributed little (<20%) to the total variation in either AA or TPH, while cultivar × environment interactions accounted for >50% of total variation in these traits. Cultivar and location effects together contributed ≈70% of the total variation observed in fruit weight. Phenotypic correlations were significant between AA and fruit weight (r = -0.44), and between TPH and fruit weight (r = -0.51). When adjusted for fruit weight, analyses for AA and TPH demonstrated that cultivar effects approached significance (P = 0.06) and accounted for ≈25% of total variance, while location effects accounted for none. Although the cultivars in this study had diverse interspecific backgrounds, utilization of various Rubus species in blackberry and hybridberry breeding is not uncommon, and our results demonstrating significant cultivar × environment interaction for AA and TPH should be applicable to breeding for high AA genotypes.

Free access

Manuel C. Palada, Thomas J. Kalb, and Thomas A. Lumpkin

AVRDC–The World Vegetable Center was established in 1971 as a not-for-profit international agricultural research institute whose mission is to reduce malnutrition and poverty among the poor through vegetable research and development. Over the past 30 years, AVRDC has developed a vast array of international public goods. The Center plays an essential role in bringing international and interdisciplinary teams together to develop technologies, empower farmers, and address major vegetable-related issues in the developing world. In its unique role, AVRDC functions as a catalyst to 1) build international and interdisciplinary coalitions that engage in vegetable and nutrition issues; 2) generate and disseminate improved germplasm and technologies that address economic and nutritional needs of the poor; 3) collect, characterize, and conserve vegetable germplasm resources for worldwide use; and 4) provide globally accessible, user-friendly, science-based, appropriate technology. In enhancing and promoting vegetable production and consumption in developing world, AVRDC's research programs contribute to increased productivity of the vegetable sector, equity in economic development in favor of rural and urban poor, healthy and more diversified diets for low-income families, environmentally friendly and safe production of vegetables, and improved sustainability of cropping systems. Recent achievements at AVRDC that greatly impact tropical horticulture in the developing world include virus-resistant tomatoes raising farmers income, hybrid sweet pepper breaking the yield barrier in the tropics, flood-resistant chili peppers opening new market opportunities, broccoli varieties for monsoon season, pesticide-free eggplant and leafy vegetable production systems and fertilizer systems that protect the environment. Beyond vegetable crops, AVRDC is playing an important role in expanding and promoting research and development efforts for high value horticultural crops, including fruit, ornamentals, and medicinal plants through its new Global Horticulture Initiative. AVRDC believes that horticulture crop production provides jobs and is an engine for economic growth. The important role AVRDC–The World Vegetable Center plays in developing and promoting tropical horticultural crops is discussed in this paper.