Search Results

You are looking at 101 - 110 of 241 items for :

  • "Pelargonium ×hortorum" x
  • Refine by Access: All x
Clear All
Full access

Christopher J. Currey, Roberto G. Lopez, and Neil S. Mattson

Energy accounts for one of the largest costs in commercial greenhouse (GH) production of annual bedding plants. Therefore, many bedding plant producers are searching for energy efficient production methods. Our objectives were to quantify the impact of growing annual bedding plants in an unheated high tunnel (HT) compared with a traditional heated GH environment at two northern latitudes. Ten popular bedding plants [angelonia (Angelonia angustifolia), vinca (Catharanthus roseus), celosia (Celosia argentea), dianthus (Dianthus chinensis), geranium (Pelargonium ×hortorum), petunia (Petunia ×hybrida), french marigold (Tagetes patula), viola (Viola ×cornuta), snapdragon (Antirrhinum majus), and osteospermum (Osteospermum ecklonis)] were grown both in an unheated HT and a glass-glazed GH with an 18 °C temperature set point beginning on 1 Apr. 2011 at both Cornell University (Ithaca, NY) and Purdue University (West Lafayette, IN). Although seven of the species exhibited a delay in flowering in the HT as compared with the heated GH, there were no differences in days to flower (DTF) for geranium, osteospermum, and viola grown at Cornell and viola at Purdue. The remaining species exhibited delays in flowering in the HT environment, which varied based on species. At Purdue, several species were lost because of a cold temperature event necessitating a second planting. For the second planting, osteospermum was the only species grown that flowered significantly later in the HT; 7 days later than the GH-grown plants. Production of cold-tolerant annuals in unheated or minimally heated HTs appears to be a viable alternative for commercial producers aiming to reduce energy costs.

Full access

David G. Clark, Christopher Dervinis, James E. Barrett, and Terril A. Nell

Experiments were conducted to determine if the seedling hypocotyl elongation and petal abscission assays could be used to identify differences in ethylene sensitivity among seedling geranium (Pelargonium ×hortorum) cultivars. When seedlings of six geranium cultivars were germinated and grown in the dark in the presence of the ethylene biosynthetic precursor 1-aminocyclopropane-1-carboxylic acid (ACC) at various concentrations, they exhibited the triple response (measured as reduced hypocotyl length). While seedlings from all six cultivars were sensitive to ACC, `Scarlet Elite' seedlings were most sensitive, and `Multibloom Lavender', `Elite White' and `Ringo 2000 Salmon' seedlings were the least sensitive when germinated and grown on 20 mm [2022 mg·L-1 (ppm)] ACC. Florets representing three developmental stages of each of the six cultivars were exposed to 1 μL·L-1 of exogenous ethylene for 0, 30, or 60 min to determine if differences in cultivar sensitivity could be determined for petal abscission. Of the six cultivars tested, `Ringo 2000 Salmon', `Multibloom Lavender' and `Elite White' were the least ethylene sensitive. Florets were also self-pollinated to test for cultivar differences in ethylene synthesis and subsequent petal abscission. Ethylene production and petal abscission were both promoted in self-pollinated florets compared to nonpollinated florets. `Ringo 2000 Salmon', `Multibloom Lavender' and `Elite White' florets produced similar amounts of ethylene as all other cultivars, but abscised fewer petals after pollination. Our results indicate that the seedling hypocotyls elongation assay may be used to identify geranium cultivars with reduced sensitivity to ethylene. The data also suggest that genetic variability exists among geraniums for both ethylene sensitivity and biosynthesis.

Free access

Dharmalingam S. Pitchay, Jonathan M. Frantz, and James C. Locke

Geranium (Pelargonium ×hortorum) is considered to be one of the top-selling floriculture plants, and is highly responsive to increased macro- and micronutrient bioavailability. In spite of its economic importance, there are few nutrient disorder symptoms reported for this species. The lack of nutritional information contributes to suboptimal geranium production quality. Understanding the bioenergetic construction costs during nutrient deficiency can provide insight into the significance of that element predisposing plants to other stress. Therefore, this study was conducted to investigate the impact of nutrient deficiency on plant growth. Pelargonium plants were grown hydroponically in a glass greenhouse. The treatment consisted of a complete modified Hoagland's millimolar concentrations of macronutrients (15 NO3-N, 1.0 PO4-P, 6.0 K, 5.0 Ca, 2.0 Mg, and 2.0 SO4-S) and micromolar concentrations of micronutrients (72 Fe, 9.0 Mn, 1.5 Cu, 1.5 Zn, 45.0 B, and 0.1 Mo) and 10 additional solutions each devoid of one essential nutrient (N, P, Ca, Mg, S, Fe, Mn, Cu, Zn, or B). The plants were photographed and divided into young, maturing, and old leaves, the respective petioles, young and old stems, flowers, buds, and roots at “hidden hunger,” incipient, mid- and advanced-stages of nutrient stress. Unique visual deficiency symptoms of interveinal red pigmentation were noted on the matured leaves of P- and Mg-deficient plants, while N-deficient plants developed chlorotic leaf margins. Tissue N concentration greatly influenced bioenergetic construction costs, probably due to differences in protein content. This information will provide an additional tool in producing premium geraniums for the greenhouse industry.

Free access

Ron M. Wik, Paul. R. Fisher, Dean A. Kopsell, and William R. Argo

Two experiments were completed to determine whether the form and concentration of iron (Fe) affected Fe toxicity in the Fe-efficient species Pelargonium ×hortorum `Ringo Deep Scarlet' L.H. Bail. grown at a horticulturally low substrate pH of 4.1 to 4.9 or Fe deficiency in the Fe-inefficient species Calibrachoa ×hybrida `Trailing White' Cerv. grown at a horticulturally high substrate pH of 6.3 to 6.9. Ferric ethylenediaminedi(o-hydroxyphenylacetic) acid (Fe-EDDHA), ferric ethylenediamine tetraacetic acid (Fe-EDTA), and ferrous sulfate heptahydrate (FeSO4·7H2O) were applied at 0.0, 0.5, 1.0, 2.0, or 4.0 mg ·L–1 Fe in the nutrient solution. Pelargonium showed micronutrient toxicity symptoms with all treatments, including the zero Fe control. Contaminant sources of Fe and Mn were found in the peat/perlite medium, fungicide, and lime, which probably contributed to widespread toxicity in Pelargonium. Calibrachoa receiving 0 mg Fe/L exhibited severe Fe deficiency symptoms. Calibrachoa grown with Fe-EDDHA resulted in vigorous growth and dark green foliage, with no difference from 1 to 4 mg·L–1 Fe. Using Fe-EDTA, 4 mg Fe/L was required for acceptable growth of Calibrachoa, and all plants grown with FeSO4 were stunted and chlorotic. Use of Fe-EDDHA in water-soluble fertilizer may increase the upper acceptable limit for media pH in Fe-inefficient species. However, iron and Mn present as contaminants in peat, irrigation water, or other sources can be highly soluble at low pH. Therefore, it is important to maintain a pH above 6 for Fe-efficient species regardless of applied Fe form or concentration, in order to avoid the potential for micronutrient toxicity.

Free access

Catherine S.M. Ku and David R. Hershey

Geraniums (Pelargonium × hortorum L.H. Bailey `Yours Truly') were grown in a glasshouse from 15 Mar. to 9 May as single pinched plants in a growing medium with a bulk volume of 1.3 liters per 15cm diameter standard plastic pot. Plants received constant fertigation with N at 300 mg·liter-1 from 20N-4.4P-16.6K with leaching fractions (LFs) of ≈ 0, 0.1, 0.2, and 0.4. The LF is the volume of solution leached from the container divided by the volume of solution applied to the container. There were 24 irrigations during the study. Plants with LFs of 0.2 and 0.4 had 46% larger leaf area, 40% more shoot fresh mass, and 37% more shoot dry mass than plants with LFs of 0 and 0.1. By week 5, the leachate electrical conductivity (EC) at 25C for LFs of 0.1,0.2, and 0.4 had increased from ≈ 3 dS·m-1 initially to 12, 8, and 4 dS·m-1, respectively. At harvest, the EC of a saturated medium extract (ECe) was 7, 4, 3, and 2 dS·m-1 for LFs of 0, 0.1, 0.2, and 0.4, respectively. At harvest, medium EC, with LFs of 0.1, 0.2, and 0.4 was 47% 68%, and 60% less in the lower two-thirds of the pot than in the upper third. With a LF of 0, the medium EC, was `not lower in the bottom of the pot. With fertigation N at 300 mg·liter-1, minimizing the LF substantially reduced growth of container-produced geraniums. In addition to specifying LF, the number of container capacities leached per week, termed the leaching intensity (LI), should be calculated for container leaching studies. In two studies, the LFs may be the same yet the LIs can be very different.

Free access

Matthew D. Taylor, Paul V. Nelson, and Jonathan M. Frantz

The cause of sudden substrate pH decline by geranium (Pelargonium ×hortorum Bailey) is unknown. Published reports indicate that this response can be influenced in other plants by temperature and light extremes. The first of five experiments compared plants with all flowers removed to plants that were allowed to flower. Experiment 2 compared plants grown at four light levels (105, 210, 450 and 1020 μmol·m–2·s–1). Experiment 3 compared plants grown at four temperatures (14/10, 18/14, 22/18 and 26/22 °C day/night). Experiment 4 was a repeat of Experiment 1 and Experiment 5 was a factorial combining the three highest light levels and the three highest temperature levels. Plants allowed to form flowers had a final substrate pH of 5.7 compared to 6.3 for plants where flowers were removed. With increasing increments of temperature, substrate pH declined from 6.8 to 4.6 and with increasing light intensity from 6.1 to 4.8. There was no effect of flower removal in Experiment 4. Light and temperature had no consistent effects in Experiment 5 throughout 46 days after planting, with most pH values remaining in the acceptable range of 5.6–6.1. By 60 days, temperature treatments began to segregate, with pH being highest in the low-temperature treatments and lowest, down to 5.5, in the highest-temperature treatments. High temperature stimulated geranium acidification in both experiments, with the effect more severe in the first experiment. The flowering and high light effects were not duplicated in the second trial. This indicates that an additional factor is involved in expression of the light, temperature, and flowering control of acidification.

Free access

D. Yvette Henson, Steven E. Newman, and David E. Hartley

This study was conducted to evaluate the growth, visual quality, and stress response of 17 species of bedding plants and Kentucky bluegrass (Poa pratensis L.) grown outdoors for 10 weeks during the summer of 2003 at three locations in Colorado. Plants were irrigated at 100% of the reference evapotranspiration (ET0) (amount required to maintain Kentucky bluegrass in an optimum condition) for 2 weeks followed by 8 weeks at five irrigation levels: 0%, 25%, 50%, 75%, and 100% ET0. Begonia carrieri Hort. `Vodka', Lobelia erinus L. `Cobalt Blue', and Viola ×wittrockiana Gams. `Crown Gold' grew well with a minimum of 50% or more ET0 based on Kentucky bluegrass. Impatiens walleriana Hook. fil. `Tempo White' grew well only with 100% ET0. Antirrhinum majus L. `Sonnet Yellow', Dianthus L. `First Love', Lobularia maritima (L.) Desv. `Carpet White', and Pelargonium ×hortorum L.H. Bailey performed well with 25% to 50% ET0. The species Catharanthus roseus (L.) G. Don `Peppermint Cooler', Rudbeckia hirta L. `Indian Summer', Senecio cineraria D.C. `Silver Dust', Tagetes erecta L. `Inca Yellow' and T. patula L. `Bonanza Gold', Zinnia angustifolia Kunth., and Salvia farinacea Benth. `Rhea Blue', which are adapted to midsummer heat and low water, performed well with 0% to 25% ET0. Species considered to be heat or drought tolerant—Petunia ×hybrida hort. ex. E. Vilm. `Merlin White' and Glandularia J.F. Gmel. `Imagination'—required little or no irrigation. The bedding plant species evaluated in this study that required 25% or less ET0 are well adapted for low-water landscape installations.

Free access

Michael R. Evans and Robert Stamps

Helianthus annuus `Big Smile', Tagetes patula 'Bonanza Deep Orange' and Pelargonium × hortorum 'Pinto Rose' seedlings were transplanted into 12 cm (470 ml) pots containing substrates composed of 3 parts (v/v) vermiculite, 3 parts sand and 2 parts perlite. In addition, the substrates contained either 3 parts Florida peat, 3 parts coconut coir (coir), 6 parts coir or 12 parts coir, thus, resulting in 4 substrates. Dolomitic limestone, hydrated limestone, superphosphate, a microelement package and a 14-6.2-11.6 slow release fertilizer were added to the Florida peat-containing substrate. The same materials were added to the coir-containing substrates except that calcium sulfate (gypsum) was used in place of dolomitic and hydrated limestone. All materials were incorporated at rates required to obtain an initial pH of 5.5 to 5.8 and provide equal amounts of calcium, phosphorus and microelements. Data were taken 5 weeks after transplanting. Neither height, shoot fresh weights nor root fresh weights were significantly different between the substrates. Tagetes average heights were between 11.5 and 12.9 cm, while average shoot fresh weights were between 12.6 and 14.7 g and average root fresh weights were between 8.8 and 9.4 g. Helianthus average heights were between 18.4 and 19.9 cm, while average shoot fresh weights were between 29.7 and 31.9 g and average root fresh weights were between 19.6 and 22.3 g. Pelargonium average heights were between 11.9 and 13.4 cm, while average shoot fresh weights were between 13.8 and 15.3 g and average root fresh weights were between 3.4 and 3.7 g.

Free access

Wesley C. Randall and Roberto G. Lopez

To produce uniform, compact, and high-quality annual bedding plant seedlings in late winter through early spring, growers in northern latitudes must use supplemental lighting (SL) to achieve a photosynthetic daily light integral (DLI) of 10 to 12 mol·m−2·d−1. Alternatively, new lighting technologies may be used for sole-source photosynthetic lighting (SSL) to grow seedlings in an indoor high-density multilayer controlled environment. The objective of this study was to compare seedlings grown under low greenhouse ambient light (AL) to those grown under SL or SSL with a similar DLI. On hypocotyl emergence, seedlings of vinca (Catharanthus roseus), impatiens (Impatiens walleriana), geranium (Pelargonium ×hortorum), petunia (Petunia ×hybrida), and French marigold (Tagetes patula) were placed in a greenhouse under AL or AL plus SL delivering a photosynthetic photon flux (PPF) of 70 µmol·m−2·s–1 for 16 hours, or under multilayer SSL delivering a PPF of 185 µmol·m−2·s–1 for 16 hours in a walk-in growth chamber. Supplemental lighting consisted of high-pressure sodium (HPS) lamps or high-intensity light-emitting diode (LED) arrays with a red:blue light ratio (400–700 nm; %) of 87:13, and SSL consisted of LED arrays providing a red:blue light ratio (%) of 87:13 or 70:30. Root and shoot dry mass, stem diameter, relative chlorophyll content, and the quality index (a quantitative measurement of quality) of most species were generally greater under SSL and SL than under AL. In addition, height of geranium, petunia, and marigold was 5% to 26%, 62% to 79%, and 7% to 19% shorter, respectively, for seedlings grown under SSL compared with those under AL and SL. With the exception of impatiens, time to flower was similar or hastened for all species grown under SL or SSL compared with AL. Seedlings grown under SSL were of similar or greater quality compared with those under SL; indicating that LED SSL could be used as an alternative to traditional greenhouse seedling production.

Free access

Paul R. Fisher, William R. Argo, and John A. Biernbaum

Two experiments were run to validate a “Nitrogen Calcium Carbonate Equivalence (CCE)” model that predicts potential fertilizer basicity or acidity based on nitrogen (N) form and concentration for floriculture crops grown with water-soluble fertilizer in containers with minimal leaching. In one experiment, nine bedding plant species were grown for 28 days in a peat-based substrate using one of three nutrient solutions (FS) composed of three commercially available water-soluble fertilizers that varied in ammonium to nitrate (NH4 +:NO3 ) ratio (40:60, 25:75, or 4:96) mixed with well water with 130 mg·L−1 calcium carbonate (CaCO3) alkalinity. Both the ammonium-nitrogen (NH4-N) content of the FS and plant species affected substrate pH. Predicted acidity or basicity of the FS for Impatiens walleriana Hook.f. (impatiens), Petunia ×hybrida E. Vilm. (petunia), and Pelargonium hortorum L.H. Bailey (pelargonium) from the Nitrogen CCE model was similar to observed pH change with an adjusted R 2 of 0.849. In a second experiment, water alkalinity (0 or 135.5 mg·L−1 CaCO3), NH4 +:NO3 ratio (75:25 or 3:97), and N concentration (50, 100, or 200 mg·L−1 N) in the FS were varied with impatiens. As predicted by the N CCE model, substrate pH decreased as NH4 + concentration increased and alkalinity decreased with an adjusted R 2 of 0.763. Results provide confidence in the N CCE model as a tool for fertilizer selection to maintain stable substrate pH over time. The limited scope of these experiments emphasizes the need for more research on plant species effects on substrate pH and interactions with other factors such as residual limestone and substrate components to predict pH dynamics of containerized plants over time.