Search Results

You are looking at 91 - 100 of 841 items for :

  • Refine by Access: All x
Clear All
Full access

Jonathan M. Frantz, Cary A. Mitchell, and Jay Frick

A solid-matrix-over-liquid (hybrid) growth system was developed for direct sowing of small-seeded crop species into hydroponic culture and compared for performance with a standard solid-matrix, capillary-wick hydroponic system. Seeds were sown directly onto a 3-cm (1.2-inch) deep soilless seed bed occupying 0.147 m2 (1.582 ft2) within a tray. The planted seed bed was moistened by wicking up nutrient solution through polyester wicking material from a 7.0-L (6.6-qt) reservoir just below the matrix seed bed. The hybrid system successfully grew dense [435 plants/m2 (40.4 plants/ft2)], uniform canopies of dwarf Brassica napus L. in a controlled-environment growth room. Seed yield using the hybrid system was twice that achieved with the matrix-based system. Both systems eliminated the labor needed to transplant many small seedlings from a separate nurse bed into a standard bulk liquid hydroponic system. Root-zone pH extremes caused by ion uptake and exchange between roots and unrinsed soilless media were avoided for the hybrid system by the short dwell time of roots in the thin matrix before they grew through the matrix and an intervening headspace into the bulk solution below, where pH was easily managed. Once roots grew into the bulk solution, its level was lowered, thereby cutting off further capillary wicking action and drying out the upper medium. Beyond early seedling establishment, water and nutrients were provided to the crop stand only by the bulk nutrient solution. This hybrid hydroponic system serves as a prototype for largerscale soilless growth systems that could be developed for production of smallseeded crops in greenhouses or controlled environments.

Free access

Barbara E. Liedl, Kristen Wilfong, Christina Taylor, and Kari Mazzaferro

Fertilizer costs and increased awareness of point-source pollution are amplifying the pressures on farming, economics along with public demand for sustainable production methods and organically grown produce. Our research focuses on using effluent from thermophilic anaerobic digestion of poultry litter as an alternative fertilizer. Cucumbers (Cucumis sativus L.) were grown hydroponically using a bato bucket system to evaluate the effects of liquid effluent as a nutrient solution versus a commercial nutrient solution. Seeds of the beit alpha cultivar `Manar' were started in Horticubes and transplanted into buckets containing a perlite/coir media. The effluent fertilizer consisted of effluent diluted to the same ppm nitrogen found in the commercial fertilizer based on ammonium measured in the effluent. Hydroponic solutions were monitored twice a day to maintain a pH of 5.6-6.0. Fruit was harvested three times a week and graded on size and shape. Fruit of each grade were counted, weighed, and recorded. Average fruit weight and fruit number produced was statistically significant between the two fertilizer regimes with the commercial fruit, averaging 84 g compared to 75 g for effluent fruit. The effluent treatment produced a greater percentage of grade 1 fruit (33%) compared to the commercial treatment (26% grade 1 fruit). Thus, 74% of the commercial harvest was grade 2 or cull fruit compared to only 66% of the effluent harvest. Correlating grade with average fruit weight analysis identified statistical differences between treatments for the grade 1 fruit, but not the grade 2 or the culls. While effluent from thermophilic anaerobic digestion shows promise as an alternative hydroponic fertilizer, it is not better than the commercial fertilizer regime.

Full access

Nicole L. Shaw and Daniel J. Cantliffe

Mini or “baby” vegetables have become increasingly popular items for restaurant chefs and retail sales. Squash (Cucurbita pepo) are generally open-field cultivated where climate, insect, and disease pressures create challenging conditions for growers and shippers who produce and market this delicate, immature fruit. In order to overcome these challenges, in Spring 2003 and 2004, 18 squash cultivars, including zucchini, yellow-summer, patty pan/scallop, and cousa types, were grown hydroponically in a passively ventilated greenhouse and compared for yield of “baby”-size fruit. Squash were graded as “baby” when they were less than 4 inches in length for zucchini, yellow-summer, and cousa types and less than 1.5 inches diameter for round and patty pan/scallop types. In both seasons, `Sunburst' (patty pan) produced the greatest number of baby-size fruit per plant, while `Bareket' (green zucchini) produced the least. The zucchini-types produced between 16 and 25 baby-size fruit per plant in 2003. The yellow summer squash-types produced on average 45 baby fruit per plant. The production of the patty pan/scallop types ranged from 50 to 67 baby-size fruit per plant depending on cultivar. The cousa types produced approximately 30 baby-size fruit. Total yields were lower in 2004 due to a shortened season. Squash plants will produce numerous high quality baby-sized fruit when grown hydroponically in a reduced pesticide environment of a greenhouse where they can be harvested, packaged, and distributed to buyers daily. The cultivars Hurricane, Raven, Gold Rush, Goldy, Sunray, Seneca Supreme, Supersett, Butter Scallop, Sunburst, Patty Green Tint, Starship, Magda, and HA-187 could be used for hydroponic baby squash production.

Full access

Bernard A. Kratky

A simple, capillary, non-circulating hydroponic method is described. Lettuce seedlings are transplanted into 218-mm-long plastic tubes containing 160 ml of growing medium and the bottom 25 mm is submerged into a tank of nutrient solution. No additional fertilization, watering, or monitoring is required from transplanting until harvesting. Although the nutrient solution level may drop below the bottoms of the tubes, the roots continue to take up adequate water and nutrients to sustain growth. This method does not require pumps or electrical power. `Green Ice' leaf lettuce produced 24% more salable yield growing with this method than comparable plants growing in conventional soil culture.

Open access

Paul R. Adler and Gerald E. Wilcox

Abstract

The addition of chlormequat chloride to tomato (Lycopersicon esculentum Mill.) transplants decreased fruit yield, number, and size. Flowering was accelerated both by chlormequat chloride and by transplanting at a more advanced stage of development. By transplanting a more mature plant without chlormequat chloride, yield was increased over the first 3 weeks of harvest. Although it is difficult to manage a “leggy” transplant, typical of flowering hydroponic tomato transplants grown under low light levels and close spacing, increased yield was sufficient to justify this management practice. Chemical name used: 2-chloro-N,N,N-trimethylethanaminium chloride (chlormequat chloride).

Free access

L. Botrini, A. Graifenberg, and M. Lipucci di Paola

The tomato cultivars Edkawi and UC 82B (Lycopersicon esculentum Mill.) were grown hydroponically in a solution [electrical conductivity (EC) 2.4 dS·m-1] containing 150 mm Na (EC 11.4 dS·m-1), 37 mm of K (EC 14.1 dS·m-1), or 75 mm of K (EC 19.7 dS·m-1). The leaf Na content of `Edkawi' and `UC 82B' reached values of 1717 and 2022 mmol·kg-1 dry weight at EC 19.7 dS·m-1, respectively. The high levels of K in the hydroponic solution reduced the Na concentration in the roots, petioles, and stems, but not in the leaves. Potassium concentrations in the petioles of `Edkawi' and `UC 82 B' reached values of 2655 and 2966 mmol·kg-1 dry weight, respectively. At these elevated ECs, the Ca concentrations in the leaves of `Edkawi' and `UC 82B' were 30% and 40% lower than in the control, respectively. The elevated rates of K improved the fruit: flower ratio of `UC 82B', but the high salinity of the solution reduced yields significantly. Plant fresh weight and root dry weight of `UC 82B' were most affected by high EC levels. The elevated levels of K used in this study did not increase yield, but K ions can adjust to Na uptake.

Free access

R.L. Qu, D. Li, R. Du, and R. Qu

Turfgrass, which is widely grown and produces a large amount of biomass, could act as a sink for industrial pollutants in urban and suburban regions. Little research has been conducted regarding heavy metal uptake by turfgrasses. The objective of this study was to evaluate root uptake of lead (Pb) in four turfgrass species. Grasses were grown hydroponically in solutions containing from 0 to 450 mg·L-1 Pb, at either pH 4.5 or 5.5, for 4 or 8 days. A significant quadratic relation existed between Pb accumulation in roots and solution Pb concentration within the tested range. The maximum Pb accumulation in roots of the four species was in the range of 20 mg·g-1 dry root weight. Tall fescue (Festuca arundinacea Schreb.) and Spartina patens survived at 450 mg·L-1 Pb solution without showing obvious damage while centipedegrass [Eremochloa ophiuroides (Munro) Hack.] and buffalograss [Buchlöe dactyloides (Nutt.) Engelm.] deteriorated or died at this concentration. This study showed that turfgrass plants can absorb heavy metals efficiently and tolerate high Pb concentration in hydroponic solutions and thus may have a potential use in environmental remediation as a biological extractor of lead.

Free access

Yan Chen, Donald Merhaut, and J. Ole Becker

Nitrogen (N) fertilization is critical for successful production of cut flowers in a hydroponic system. In this study, two sunflower cultivars: single-stand `Mezzulah' and multi-stand `Golden Cheer' were grown under two N fertilization rates: 50 mg·L-1 and 100 mg·L-1 in a recirculating hydroponic system. At the same time, `Mezzulah' sunflowers were biologically stressed by exposing each plant to 2000 second-stage juveniles of the plant parasitic nematode Meloidogyne incognita, race 1. The experiment was conducted in May and repeated in Sept. 2004, and plant growth and flower quality between control and nematode-infested plants were compared at the two N rates. The two cultivars responded differently to fertilization treatments. With increasing N rate, the dry weight of `Mezzulah' increased, while that of `Golden Cheer' decreased. Flower size and harvest time were significantly different between the two cultivars. However, N had no effect on flower quality and harvest time. Flower quality rating suggests that quality cut stems can be obtained with 50 mg·L-1 N nutrient solution. Nematode egg count suggests that plants in the nematode treatment were successfully infested with Meloidogyne incognita, however, no significant root galling was observed, and plant growth and flower quality were not affected by nematode infestation.

Free access

Tae-Cheol Seo, Changhoo Chun, Hyung-Kweon Yun, and Han-Cheol Rhee

Edible chrysanthemum, pak-choi, endive, chicory, and lettuce were hydroponically cultured under root-restricted conditions in DFT systems and their growth and nutritional values were investigated. Cylindrical plastic tubes 100 mm tall and 20, 25, and 30 mm in diameter were used for root restriction. Growth of all the species was retarded, as the roots were restricted. Pak-choi and edible chrysanthemum showed the greater reduction in growth compared with chicory and endive. Percentage of dry matter, C:N ratio, and ascorbic acid and anthocyanin contents increased in the root-restricted treatments. Changes in mineral contents as affected by root restriction were not consistent among tested species. Optimized root volumes to improve the nutritional values and to reduce the retarding of growth varied according to species of leafy vegetables. Tubes of Φ25mm × 10cm and Φ30mm × 10 cm gave the best results in chicory, endive, and lettuce, and edible chrysanthemum and pak-choi, respectively. Results indicate that nutritional values of hydroponically cultured leafy vegetables can be improved by root restriction using plastic tubes.

Free access

Linda Gaudreau, Josée Charbonneau, Louis-P. Vézina, and André Gosselin

Two cultivars (Karlo and Rosanna) of greenhouse lettuce were grown under different photosynthetic photon fluxes (PPF) and photoperiods provided by 400-W high–pressure sodium lamps. Natural light was compared to suppletmental lighting treatments providing either 50 or 100 μmol m-2-s-1 for photoperiods of 16, 20 or 24 h. Lettuce plants were grown in hydroponic gulleys using a standard nutrient solution. Plant fresh weights were measured every week for the duration of each culture grown between August 1989 and June 1990. The incidence of tipburn and the overall quality of the shoots were determined at the end of each crop. Leaf nitrate contents and nitrate reductase activity were measured for various lighting treatments. The highest fresh weight was obtained for the highest PPF and the longest photoperiod. However, these treatments were associated with a higher incidence of tipburn. Supplemental lighting reduced the leaf nitrate contents and affected the nitrate reductase activity.