Search Results

You are looking at 91 - 100 of 596 items for :

  • common bean x
  • Refine by Access: All x
Clear All
Free access

Gino Beltran, Geunhwa Jung, Mark Bassett, and James Nienhuis

The development of a complete linkage map including both morphological and molecular markers is important to understand the genetic relationships among quantitatively and qualitatively inherited traits in common bean. The objective of this study was to identify RAPD markers linked to genes for four morphological traits using bulked segregant analysis and to map the markers to a molecular linkage map previously constructed in common bean. Three segregating populations were evaluated. Two BC2F2 populations with dgs (dark green savoy leaf) and blu (blue flower) induced mutant was developed with a Florida breeding line 7-1404 and 5-593 as the recurrent parent. In addition, a BC3F2 population with the y (yellow wax pod) and the arg (silvery green pod) mutants was developed from the Lamprecht line PI 527858 and 5-593 as the recurrent parent. RAPD markers linked in coupling to the morphological traits were detected to be 4.1 cM, 4.3 cM, 7.3 cM, and 12.3 cM distant from the dgs, blu, y, and arg genes, respectively. The linked RAPD markers were mapped in the molecular linkage map previously constructed using recombinant inbred population of the cross PC-50 × XAN-159. In this linkage map, we observed a linkage between the C locus and blu gene whose location was not previously known. In addition, a linkage between an abaxial leaf pubescent gene and dgs gene was observed. These results indicate that integrating morphological markers and molecular markers can result in a more complete genetic linkage map in common bean.

Free access

Jelka Šustar-Vozlič, Marko Maras, Branka Javornik, and Vladimir Meglič

There is a long tradition of common bean cultivation in Slovenia, which has resulted in the development of numerous landraces in addition to newly established cultivars. The genetic diversity of 100 accessions from the Genebank of the Agricultural Institute of Slovenia (AIS) were evaluated with amplified fragment length polymorphism (AFLP) markers and phaseolin seed protein. Twenty-seven standard accessions of known Mesoamerican and Andean origin, 10 wild Phaseolus vulgaris accessions and two related species, P. coccineus L. and P. lunatus L., were also included. Ten AFLP primer combinations produced 303 polymorphic bands, indicating a relatively high level of genetic diversity. Based on the marker data, unweighted pair group method with arithmethic mean (UPGMA) analysis and principal coordinate analysis (PCoA) all P. vulgaris accessions were separated into three well-defined groups. Two groups consisted of accessions of Mesoamerican and Andean origin, while the third was comprised of only four wild P. vulgaris accessions. A set of Slovene accessions formed a well-defined sub-group within the Andean cluster, showing their unique genetic structure. These data were supported by phaseolin analysis, which also revealed additional variants of “C” and “T” phaseolin types. The results are in agreement with previous findings concerning diversification of common bean germplasm introduced in Europe.

Free access

Mohamed F. Mohamed, Paul E. Read, and Dermot P. Coyne

, Nebraska Agricultural Research Division. Research was conducted under Title XII Bean/Cowpea CRSP Project, Univ. of Nebraska, Univ. of Puerto Rico, and Dominican Republic under AID contract no. DNA-1310-G-SS-6008-00 and also under Project no. 20-036. The

Free access

Mark J. Bassett, Rian Lee, Carla Otto, and Phillip E. McClean

Inheritance of the strong greenish-yellow (SGY) seedcoat color in `Wagenaar' common bean (Phaseolus vulgaris L.) was investigated. Line 5-593 is a determinate, Florida dry bean breeding line (with small black seeds) used as the recurrent parent in the development of many genetic stocks, e.g., g b v BC3 5-593. Through crosses with genetic tester stocks, the seedcoat genotype of `Wagenaar' was confirmed to be C J g b v lae Rk. Three randomly amplified polymorphic DNA markers (OAP7850, OAP31400, and OU14950) that cosegregated with the G seedcoat color locus were developed from the F2 population derived from the cross g b v BC2 5-593 × G b v BC3 5-593. From the cross `Wagenaar' × g b v BC3 5-593, 80 F2 plants were classified into 54 non-SGY and 16 SGY seedcoat color plants. When the OAP7850 marker was applied to that population, linkage was not observed with the non-SGY and SGY phenotypes. Conversely, a molecular marker (OAP12400, that was developed from the F2 from the cross `Wagenaar' × g b v BC3 5-593) linked to the locus controlling the SGY phenotype segregated independently of the G locus. Therefore, SGY phenotype is not controlled by the G locus. An F3 progeny test of 76 F2 plants from the cross `Wagenaar' × g b v BC3 5-593 confirmed the hypothesis that a single recessive gene (for which we propose the symbol gy) controls the seedcoat color change from pale greenish yellow (PGY) to SGY. Through crosses with genetic tester stocks, the seedcoat genotype of `Enola' was determined to be C J g b v lae Rk. The test cross `Enola' × `Wagenaar' demonstrated that `Enola' also carries the gy gene. The relationship of `Enola' to the `Mayocoba' market class of common bean and to `Azufrado Peruano 87' is discussed.

Free access

G. Jung, J. Nienhuis, S. Hirano, C. Upper, H. Ariyarathne, and D.P. Coyne

Bacterial brown spot (BBS), incited by the bacterial pathogen Pseodomonas syringae pv. syringae is important disease of common bean. Phenotypic visual readings of infected areas and a leaf freezing assay estimating the population size of Pss on leaf surface were used for disease assessment for 2 years using 78 RI lines derived from Belneb RR-1 x A55 population grown in Wisconsin. The objectives of this research were to determine the genomic regions of QTL affecting the genetic variation of bacterial brown spot resistance in both assays over 2 years (1996 and 1998) and to determine the size of their genetic effects. In addition, we examined the consistency of detected QTL over environments. Three chromosomal regions associated with QTL for BBS resistance were identified in both assays in 1996 and one chromosomal region was consistently detected over 2 years.

Free access

B.T. Scully, D.H. Wallace, and D.R. Viands

of the requirements of the PhD degree. Research supported by USAID Title XII Bean/Cowpea CRSP, Hatch Act funds, and the New York State Agriculture Experiment Station. Plant Breeding paper No. 791. The cost of publishing this paper was defrayed in part

Free access

H.M. Ariyarathne, D.P. Coyne, A.K. Vidaver, and K. Eskridge

The inheritance and heritability (H) of leaf and pods reactions and seed infection of common beans (Phaseolus vulgaris L.) to Xanthomonas campestris pv. phaseoli (Smith) Dye (Xcp) were studied in three crosses along with flower and stem color, and the association of reactions to Xcp in the plant organs. Recombinant inbred lines from the crosses `PC 50' × XAN 159, BAC 6 × HT 7719, and BelNeb 1 × A 55 were used. Quantitative inheritance patterns were observed for disease reactions in leaves, pods, and seeds. Stem and flower color were inherited qualitatively. Low to intermediate and intermediate H estimates were found for pod reactions when inoculated on the same time, allowing the infection to occur in a uniform environment. Intermediate to high H estimates were found for leaf and seed reactions to Xcp, respectively. Significant positive intermediate to moderately high correlations were found between the reactions to Xcp of the first trifoliolate with later-developed leaves and pods in all three populations. The moderately high genetic correlations between leaves and pods suggested that some common genes may control the reactions to Xcp in these plant organs. No association was detected between flower or stem color and reactions to Xcp.

Free access

Mark J. Bassett

Plant Introduction (PI) accession 507984 of common bean (Phaseolus vulgaris L.) has partly colored seed coats and either pure white flowers or light laelia flowers. Crosses were made with white-flowered plants of PI 507984: white-flowered plant #1 × the genetic stock t ers ers2 BC2 5-593 and white-flowered plant #2 × recurrent parent dry bean breeding line 5-593. Inheritance was studied in the F1, F2, and F3 of the former cross and the F1 and F2 of the latter cross. PI 507984 (white flower, plant #1) × t ers ers2 BC2 5-593 gave F1 plants with colored flowers and partly colored seeds. The F2 gave a 9:7 segregation ratio (colored flowers to white flowers), and the genetic model proposed is that flower color is restored in the presence of t/t by two complementary genes, Fcr and Fcr-2. That model was confirmed by F3 progeny tests of 21 F2 parents with colored flowers. The cross PI 507984 (white flower, plant #2) × 5-593 gave an F2 segregation ratio of 9:3:4 (bishops-violet: light laelia: white flowers), indicating that the white-flowered PI 507984 has v lae masked by t. Analysis of all the data suggests that PI 507984 is heterogeneous at Fcr and Fcr-2, having all three possible homozygous genotypes, viz., either light laelia flowers from v lae t Fcr Fcr-2 or white flowers from v lae t Fcr fcr-2 or v lae t fcr Fcr-2. The flower color restoration gene in 5-593 is arbitrarily assigned the symbol Fcr. Great variability occurs in partly colored seeds of PI 507984 due to the environment in which the seed was produced.

Free access

Mark J. Bassett

The inheritance of hilum ring color in common bean (Phaseolus vulgaris L.) was investigated using various genetic tester stocks developed by backcrossing recessive alleles into a recurrent parent stock 5-593 with seedcoat genotype P [C r] D J G B V Rk, viz., mar BC2 5-593, mar BC3 5-593, mar v BC2 5-593, mar d BC2 5-593, and mar d BC3 5-593. The current hypothesis is that the margo character is controlled by mar and hilum ring color is controlled by d but expresses only with mar. The V locus controls flower and seedcoat color. The allelism test crosses `Citroen' (P C d j g b v lae) × mar BC3 5-593 and `Citroen' × mar d BC3 5-593 demonstrated that mar is allelic with j and that the putative d in mar d BC3 5-593 is allelic with the d in `Citroen'. Thus, the former genetic tester stocks mar BC3 5-593 and mar d BC3 5-593 are reclassified as j BC3 5-593 and d j BC3 5-593, respectively, because mar is a synonym for j. Similarly, the former genetic tester stock mar v BC2 5-593 is reclassified as j v BC2 5-593. The interaction of j with d expresses as loss of color in the hilum ring. The development of the white-seeded genetic tester stock P c u d j BC3 5-593 was described in detail, where the all-recessive tester `Prakken 75' was used as the source of the recessive alleles. The previously reported work showing that the partly colored seedcoat gene t interacts with mar to control seedcoat pattern is now interpreted to mean that the joker (J) locus interacts with t to produce partly colored seedcoat patterns. The genetic loci D and V were found to segregate independently. The common gene for dull seedcoats (asper, asp) is discussed and contrasted with j.

Free access

Mark J. Bassett

Common bean (Phaseolus vulgaris L.) plant introduction 527829 (formerly Lamprecht M0048) has dark seal-brown (DSB) seedcoats and pink flowers. An investigation was conducted to determine the genotype of DSB seedcoat color. M0048 was crossed with Florida breeding line 5-593, which has genotype P [C r] D J G B V Rk. A series of crosses involving M0048, 5-593, and three genetic tester stocks (v BC2 5-593, c u BC2 5-593, and b v BC2 5-593) led to determination of the genotype. Data analysis indicated that M0048 has the genotype P [? R] J G B v lae, where DSB color is produced by the interaction of R with B. Crosses between [? R] and testers with [C r] always produced seedcoat mottling in F1, except where V masks the effect. The cross [? R] B v (DSB) × c u BC2 5-593 (cartridge buff seedcoat) produced marbled seedcoats (black/cartridge buff) with genotype [? R]/[c u ?] B V. No way was found to determine whether the mottled or marbled seedcoat patterns were controlled at C or R; hence, the allelic ambiguity is indicated with a question mark. Illustrations are provided showing the difference between seedcoat mottling (a highly variable low-contrast patterning) and seedcoat marbling (a less variable high-contrast patterning, usually with cartridge buff as the background color). The development of a new genetic tester stock, [? R] b v BC3 5-593, was described, where [? R] b v gives unpatterned dominant red seedcoat color.