Search Results

You are looking at 91 - 100 of 1,698 items for :

  • Refine by Access: All x
Clear All
Open access

G. S. Cobb and G. J. Keever

Abstract

Dwarf Japanese euonymus (Euonymus japonica Thunb. ‘Microphylla’) and Japanese holly (Ilex crenata Thunb. ‘Compacta’), grown in fresh or aged (1 year) pine bark amended with a slow-release complete fertilizer, were supplied with NH4NO3 weekly at 0, 100, 200, or 300 ppm N. Plant growth, foliar color, leaf tissue N, and leachate soluble salts increased with increasing levels of supplemental N while tissue K, Ca, and Mg decreased. Plant growth, foliar color, and leaf tissue N, P, Ca, and Mg in fresh pine bark equaled or exceeded that in aged pine bark at all levels of supplemental N. Leachate soluble salts, pH, and leaf tissue K was higher in aged pine bark.

Open access

Brenda Biermann and R.G. Linderman

Abstract

The establishment and performance of vesicular–arbuscular mycorrhizae (VAM) formed by Glomus fasciculatum (Thaxter) Gerd. & Trappe were studied on geranium (Pelargonium × hortorum L.H. Bailey) and subterranean clover (Trifolium subterraneum L.) in various growth media at 2 P fertility levels. Colonization by G. fasciculatum was not extensive and shoot dry weight and P uptake consequently were not increased by VAM in soilless media such as peat, bark, perlite, and vermiculite. In media containing soil and fertilized at the low P level, roots were colonized extensively by G. fasciculatum, and host shoot growth and P concentrations were increased by VAM. Host growth enhancement by VAM was not observed at the higher P fertility level. Differences in colonization and mycorrhizal response in different fertilized growth media were correlated negatively with the logarithm of the equilibrium solution P concentration. Colonization, growth response, and P uptake by geranium inoculated with G. mosseae (Nic. & Gerd.) Gerd. & Trappe or Acaulospora spinosa Walker & Trappe were affected by growth medium and P fertilizer in the same way as plants inoculated with G. fasciculatum. Peat mosses from different sources varied considerably in their effects on mycorrhiza formation by G. fasciculatum, and on growth response of geranium when the peat was diluted with different amounts of soil. These differences appeared to be related to the equilibrium solution P concentration of the fertilized peats, and not to extractable P of the unfertilized peats. Use of rock phosphate or bonemeal instead of NaH2PO4 as a source of P did not improve the establishment of VAM and host growth response in soil, peat, or vermiculite. Addition of 5–10% Turface, bentonite, silt loam soil, or clay subsoil to peat or vermiculite resulted in increased colonization of host roots and significant mycorrhizal growth response, whereas amendment with liquid sludge inhibited formation of mycorrhizae.

Free access

Richard G. Snyder

Successful greenhouse tomato businesses are able to keep production and quality high while maintaining reasonable cost controls. One way of controlling costs is to use growing media that are locally available in good supply, and therefore of low cost. In Mississippi. as in other states in the southeast, pine bark is an available byproduct resource from the forestry industry; fines (<=95mm diameter) can be used as a growing medium following composting. Rice hulls are a readily available waste product from rice mills, especially in the Mississippi Delta region; these are suitable after being crushed and composted.

In comparison to plants grown in rock wool, yield from plants in pine bark fines, rice hulls, or sand were higher, while quality was not significantly different in the l-crop/year system. In a spring crop, yield and quality were higher from plants in pine bark, rice hulls, and rock wool than from those grown in sand. On a per plant basis, cost for the rock wool system, perlite system (pre-bagged), perlite (bulk), peat moss, sand, composted rice hulls, and pine bark lines are $1.50, $1.00, $0.35, $0.60, $0.24, $0.22 and $0.17, respectively. Pine bark and rice hulls are good choices for growing media for greenhouse tomatoes in areas where they are available.

Free access

Calvin Chong, R.A. Cline, and D.L. Rinker

Four deciduous ornamental shrubs [`Coral Beauty' cotoneaster (Cotoneaster dammeri C.K. Schneid); Tartarian dogwood (Cornus alba L.); `Lynwood' forsythia (Forsythia × intermedia Zab.); `Variegata' weigela (Weigela florida Bunge A.D.C.)] were grown in trickle-fertigated containers. There were eight media consisting of 25% or 50% sphagnum peat or composted pine bark, 25% sand, and the remainder one of two sources of spent mushroom compost; four media with 509″ peat or bark mixed with 50% spent mushroom compost; and a control medium of 10070 pine bark. Initially, higher than desirable salt levels in all compost-amended media were leached quickly (within 2 weeks of planting) and not detrimental to the species tested. Unlike cotoneaster, which showed no difference in growth (shoot dry weight) due to medium, dogwood, forsythia, and weigela grew significantly better in all compost-amended media than in the control. Growth of these three species was 20% greater in peat-based than in bark-based, compost-amended media. Dogwood and forsythia grew slightly more (+8%) with spent mushroom compost based primarily on straw-bedded horse manure than with one based on a blend of straw-bedded horse manure, wheat straw, and hay. The addition of sand (25%) to a mixture of 50% peat or bark and 25 % spent compost produced a medium with minimal compaction.

Free access

Ronald F. Walden and Alex X. Niemiera

The pour-through (PT) nutrient extraction method involves collection of leachate at the container bottom that results from displacement of substrate solution by water applied to the substrate surface. The PT is a convenient and effective means of monitoring the nutritional status of the soilless container substrates used in the nursery industry, but is less convenient for large containers, particularly those used in the “pot-in-pot” system of growing trees in production containers within in-ground socket containers. We describe a simple vacuum method of extracting solution from pine bark in containers using ceramic cup samplers. When N was applied to a pine bark substrate at 56–280 mg/L, extractable N was slightly higher for the PT than for the ceramic cup method. The correlation between applied and extractable N was 0.99 for both methods. Further comparison of pine bark extract nutrient and pH levels for PT and ceramic cup methods will be presented.

Open access

E. F. Brown and F. A. Pokorny

Abstract

Potassium concentration was highest in the upper 5 cm of medium after leaching with 10 cm H2O, lowest in the middle of the soil column (10 and 15 cm depths), and intermediate at the bottom of the column. Increasing concentrations of applied K (336, 671, and 1007 kg/ha) increased the K level in each medium tested, except 100% sand, and at each depth in the soil column. After leaching, media containing high percentages of sand (75 and 100%) had a lower K concentration at all applied K rates than media containing high percentages of bark (0 and 25% sand). Cation exchange capacity was greater in bark than sand and is probably the most important factor influencing the movement of K in pine bark and sand media.

Open access

Grace A. Chrustic and Robert D. Wright

Abstract

Rooted cuttings of Ilex crenata Thunb. ‘Helleri’, Rhododendron obtusum Planch. ‘Rosebud’, and Juniperus chinensis L. ‘San Jose’ were grown in a 100% pine-bark medium amended with dolomitic limestone at 0 to 8 kg m-3 with resulting pH from 3.4 to 7.2. Except for juniper at 2 kg m-3, growth was not increased by liming, and 8 kg m-3 tended to reduce shoot and root growth. This reduced growth was attributed in part to greater NH4 adsorption by the bark, reducing the amount available for plant uptake, and a higher nitrification rate, leading to an elevated NO3 to NH4 ratio in the medium. Liming pine bark to improve growth of these woody plants may be unnecessary.

Free access

Yin-Tung Wang and Amy Ching-Jung Tsai

Vegetatively propagated plants (15-cm in leaf spread) of a white-flowered Phalaenopsis Taisuco Kaaladian clone were imported bare-root in late May and planted in a mix consisting of three parts of medium-grade fir bark and one part each of perlite and coarse Canadian peat (by volume) or in Chilean sphagnum moss. All plants were given 200 mg·L-1 each of N and P, 100 mg·L-1 Ca, and 50 mg·L-1 Mg. K concentrations were 0, 50, 100, 200, 300, 400, and 500 mg·L-1. After 7 months, plants grown in moss produced an average of two more leaves than those in the bark mix (4 to 5 vs. 2 to 3 leaves), regardless of K rates. In any given medium, K rate did not alter the rate of leaf production. The K rate did not affect the size of the top leaves when grown in the bark mix. However, plants grown in moss had increasingly longer and wider top leaves as K rate increased. The lower leaves on plants in the bark mix receiving no K showed deficiency symptoms of purple tinting, yellowing, necrosis, and even death. Yellowing and necrosis started from the leaf tip and progressed basipetally. The K at 50 mg·L-1 reduced and 100 mg·L-1 completely alleviated the symptoms of K deficiency. Plants grown in moss and receiving no K showed limited signs of K deficiency. Flowering stems started to emerge (spiking) from plants in the bark mix up to 4 weeks earlier than those planted in sphagnum moss. For plants receiving no K, all plants in the bark mix bloomed, whereas none planted in sphagnum moss produced flowering stems. Overall, at least 200 mg·L-1 K (∼250 mg·L-1 K2O) is recommended to produce quality plants with maximum leaf growth and early spiking.

Open access

F. A. Pokorny and B. K. Henny

Abstract

A standard 1:1 v/v pine bark and sand potting medium was characterized physically by particle size distribution, bulk density (BD), total pore space, porosity at 50 cm H2O tension and porosity at >50 cm H2O tension. A potting medium identical to the standard was constructed from component milled pine bark and sand particles. Phaseolus lunatus L. ‘Jackson Wonder’ plants grown in the 2 physically similar media, under a standard cultural program, were essentially identical. Construction of a potting medium from a prescribed screen analysis provides a means to quantify variation which exists within a medium assumed to be uniform.

Free access

Calvin Chong* and Adam Dale

Terminal stem cuttings of seven woody nursery species [boxwood (Buxus sempervirens L. `Green Mountain'), coralberry (Symphoricarpus × chenaultii Rehd. `Hancock'), lilac (Syringa velutina Kom.), Peegee hydrangea (Hydrangea paniculata Siebold. `Grandiflora'), purple-leaf sandcherry (Prunus × cistena N.E. Hansen), Rose-of-Sharon (Hibiscus syriacus L. `Lucy'), and winged spindle-tree (Euonymus alata Thunb.) Siebold. `Compacta')] were rooted under outdoor lath (50% shade) and mist in leached rooting media consisting of 0, 20, 40, 60 and 80% by volume of 2-year-old grape pomace amended in binary mixtures with sphagnum peat, perlite or composted bark. Rooting performance, expressed in terms of percent rooting, mean root number per rooted cutting, and length of the longest root per cutting, was regressed on level of pomace. When there were differences due to amendments, most species rooted better with perlite than with bark and peat, to a lesser degree, due in part to more favourable air-filled porosities with perlite (33% to 42%) than with bark (29% to 37%) or peat (24% to 35%). With boxwood, increasing level of pomace up to ≈60%, especially when mixed with perlite or peat, resulted in substantial increases in rooting percentage, root number and length. All three rooting parameters of winged spindle-tree decreased linearly with increasing level of pomace with perlite or bark. The effect of pomace level on other species varied between these extremes with little or no negative effect on rooting.