Search Results

You are looking at 91 - 100 of 225 items for :

  • Agrostis stolonifera x
  • Refine by Access: All x
Clear All
Free access

Michelle DaCosta and Bingru Huang

Abscisic acid (ABA) and cytokinins are two groups of plant hormones that play important roles in regulating plant responses to decreases in soil water availability. The primary objective for this study was to determine whether species variability in drought survival and recovery for colonial bentgrass (Agrostis capillaris L.), creeping bentgrass (A. stolonifera L.), and velvet bentgrass (A. canina L.) were related to changes in ABA and cytokinin content. Plants of ‘Tiger II’ colonial bentgrass, ‘L-93’ creeping bentgrass, and ‘Greenwich’ velvet bentgrass were subjected to two soil moisture treatments: 1) well-watered controls, irrigated three times per week; and 2) drought, irrigation completely withheld for 16 days. For recovery, previously drought-stressed plants were rewatered and irrigated three times per week to evaluate the recovery potential for each species. Drought stress resulted in significant declines in turf quality (TQ), shoot extension rates, canopy net photosynthetic rate (Pn), daily evapotranspiration rate (ET), and cytokinin content, and significant increases in ABA content for all three bentgrass species. Velvet bentgrass exhibited less severe drought injury, as exhibited by higher TQ, Pn, and daily ET rate compared with colonial bentgrass and creeping bentgrass. Velvet bentgrass also had significantly less ABA accumulation, which could allow for continued gas exchange and sustained plant survival during drought stress compared with colonial bentgrass and creeping bentgrass. Upon rewatering after drought stress, colonial bentgrass exhibited more rapid recovery in turfgrass growth and water use compared with creeping bentgrass and velvet bentgrass. The higher recuperative ability of colonial bentgrass could be associated with its more rapid decline in ABA content and increases in cytokinin content compared with creeping bentgrass and velvet bentgrass.

Free access

Xunzhong Zhang, E.H. Ervin, and R.E. Schmidt

A variety of organic materials such as humic substances, seaweed extracts (SWE), organic matter, and amino acids are being used as fertilizer supplements in commercial turfgrass management. Among them, SWE and humic acid (HA) are widely used in various biostimulant product formulations. These compounds have been reported to contain phytohormones and osmoprotectants such as cytokinins, auxins, polyamines, and betaines. Manufacturer claims are that these products may supplement standard fertility programs by reducing mineral nutrient requirements while improving stress tolerance. There is a lack of season-long, field-based evidence to support these claims. This study was conducted to investigate the influence of monthly field applications of SWE, HA, and high and low seasonal fertilization regimes on the physiological health of fairway-height creeping bentgrass (Agrostis stolonifera L.). Plots were treated monthly with SWE at 16 mg·m-2 and HA (70% a.i.) at 38 mg·m-2 alone, or in combination, and were grown under low (20 kg·ha-1/month) or high nitrogen (50 kg·ha-1/month) fertilization regimes during 1996 and 1997. Endogenous antioxidant superoxide dismutase (SOD) activity, photochemical activity (PA), and turf quality were measured in July of each year. Superoxide dismutase activity was increased by 46% to 181%, accompanied by a PA increase of 9% to 18%, and improved visual quality of bentgrass in both years. There was no significant fertilization × supplement interaction. Although not part of our original objectives, it was noted that significantly less dollar spot (Sclerotinia homoeocarpa F.T. Bennett) disease incidence occurred in supplement-treated bentgrass. Our results indicate that increased SOD activity in July due to SWE and/or HA applications improved overall physiological health, irrespective of fertilization regime. This suggests that these compounds may be beneficial supplements for reducing standard fertilizer and fungicide inputs, while maintaining adequate creeping bentgrass health.

Free access

Zhaolong Wang, John Pote, and Bingru Huang

This study was designed to examine whether shoot injury induced by high root-zone temperature is associated with changes in shoot detoxifying metabolism and to determine the level and duration of high root-zone temperatures that would induce physiological changes in two cultivars of creeping bentgrass (Agrostis stolonifera var. palustris Huds) differing in heat tolerance. Plants of `Penn A-4' (heat tolerant) and `Putter' (heat susceptible) were grown in sand and exposed to root-zone temperatures of 20 (control), 21, 22, 23, 25, 27, 31, and 35 °C in water baths while air temperature was maintained at 20 °C in a growth chamber. Turf quality, leaf cytokinin content, and antioxidant enzyme activities declined at increased soil temperatures and the duration of treatment for both cultivars. A decline in turf quality occurred following 40 days of exposure to 35 °C for `Penn A-4' and 26 days of exposure to 31 °C for `Putter'. The root-zone temperature causing the decline of isopentenyl adenosine and zeatin cytokinins was 25 °C at 37 d for `Putter' and 27 °C at 47 days for `Penn A-4'. The temperature causing the decline of superoxide dismutase and catalase activities was 25 °C and 27 °C at 33 days for `Putter' and 27 °C and 31 °C at 43 days for Penn A-4, respectively. Malondialdehyde content increased at 27 °C for `Putter' and 31 °C for `Penn A-4' at 43 days of treatment. The decline in cytokinin content and antioxidant enzyme activity occurred at a lower soil temperature and earlier during the treatment than the decline in turf quality, possibly contributing to turf quality decline. The root-zone temperatures causing the decline in turf quality, cytokinin content, and oxidative damage were higher in the heat-tolerant cultivar than heat-susceptible cultivar.

Free access

Qingzhang Xu, Bingru Huang, and Zhaolong Wang

Heat injury in creeping bentgrass (Agrostis stolonifera var. palustris Huds) has been associated with decreases in carbohydrate availability. Extending light duration may increase carbohydrate availability and thus improve growth of creeping bentgrass under heat stress. The objective of this study was to investigate whether turf performance and carbohydrate status could be improved by extending daily light duration for creeping bentgrass exposed to supraoptimal temperature conditions. `Penncross' plants were initially grown in growth chambers set at a day/night temperature of 20/15 °C and 14-hour photoperiod and then exposed to a day/night temperature of 33/28 °C (heat stress) and three different light durations: 14 (control), 18, and 22 hours (extended light duration) for 30 days. Turf quality and tiller density decreased with the duration of heat stress, as compared to the initial level at 20 °C, regardless of the light duration. However, both parameters increased with extended light duration from 14 to 18 or 22 hours. Extended light duration, particularly to 22 hours, also improved canopy net photosynthetic rate from -1.26 to 0.39 μmol·m-2·s-1 and daily total amount of carbon assimilation from -6.4 to 31.0 mmol·m-2·d-1, but reduced daily total amount of carbon loss or consumption to 50% through dark respiration compared to 14 hours treatment by the end of experiment. In addition, extending light duration from 14 to 22 hours increased water-soluble carbohydrate content in leaves both at the end of light duration and the dark period. These results demonstrated that extending light duration improved turf performance of creeping bentgrass under heat stress, as manifested by the increased tiller density and turf quality. This could be related to the increased carbohydrate production and accumulation. Supplemental lighting could be used to improve performance if creeping bentgrass is suffering from heat stress.

Free access

Michelle DaCosta and Bingru Huang

Osmotic adjustment (OA) is a major physiological mechanism associated with maintenance of cell turgor in response to dehydration stress. The objectives of this study were to examine changes in capacity for OA in relation to plant tolerance to drought stress for two cool-season turfgrass species, creeping bentgrass (Agrostis stolonifera L.) and velvet bentgrass (A. canina L.), and to determine major solutes contributing to OA in these grass species. Plants of `L-93' creeping bentgrass and `Greenwich' velvet bentgrass were grown in a growth chamber in polyvinyl chloride (PVC) tubes (5 cm diameter, 40 cm high) filled with a 1:3 (v/v) sterilized mixture of sand and sandy loam soil. The experiment consisted of two soil moisture treatments: 1) well-watered control, irrigated three times per week to maintain soil moisture near pot capacity; and 2) drought stress, irrigation completely withheld. Velvet bentgrass exhibited higher drought tolerance compared to creeping bentgrass, as manifested by higher visual turfgrass quality (TQ) and leaf relative water content (RWC) under drought stress. Both creeping bentgrass and velvet bentgrass exhibited OA in response to drought stress; however, velvet bentgrass exhibited 50% to 60% higher magnitude of OA, which could be related to the maintenance of higher leaf RWC and TQ for greater drought duration compared to creeping bentgrass. OA for both creeping bentgrass and velvet bentgrass was associated with accumulation of water soluble carbohydrates during the early period of drought and increases in proline content following prolonged period of drought; however, inorganic ion content (Ca2+ and K+) did not considerably change under drought stress and did not seem to contribute to OA in these species.

Free access

John Pote, Zhaolong Wang, and Bingru Huang

Knowledge of the level of soil temperatures that is detrimental for shoot and root growth for cool-season grasses may help develop heat-tolerant plants and effective management practices to improve summer performance. The objectives of this study were to determine the level and duration of high temperatures in the root zone that will induce decline for various growth and physiological parameters and to compare the responses of different physiological parameters and cultivars to high root-zone temperatures. Nine creeping bentgrass [Agrostis stolonifera L. var. palustris (Huds.) Farw.] cultivars were subjected to eight root-zone temperatures (20, 21, 22, 23, 25, 27, 31, 35 °C) in water baths while exposed to a constant air temperature of 20 °C for 54 days. Root number, dry weight, and depth, active root biomass, turf quality, leaf cytokinin content, and canopy net photosynthetic rate (Pn), decreased in all nine cultivars as root-zone temperature increased from 20 to 35 °C, but the time and temperature at which the decline occurred varied for each parameter measured. Pn, cytokinin content, root number, and turf quality declined at 23, 27, 27, and 35 °C, respectively, after 28 days of exposure. Active root biomass, root number, root dry weight, turf quality, and rooting depth declined at 23, 25, 25, 25, and 35 °C, respectively, at 54 days. At a 31 °C root-zone temperature the decline in root number, cytokinin content, and turf quality occurred at 19, 37, and 47 days, respectively. The results suggest that root-zone temperatures of 23 °C or above this level were detrimental to root activities, Pn, and overall turf growth. Root and Pn decline at lower temperatures and earlier in the study than turf quality suggest that the disturbance of physiological activities of roots and leaves could lead to turfgrass quality decline at high root-zone temperatures.

Free access

Yali He, Xiaozhong Liu, and Bingru Huang

Various physiological processes may deteriorate in response to increasing temperatures, contributing to the decline in turf quality for cool-season turfgrasses during heat stress. This study was performed to investigate metabolic changes (membrane lipid peroxidation, total protein content, amino acid content, and protease activity) associated with turf quality decline for creeping bentgrass (Agrostis stolonifera Huds.) in response to gradually increasing temperatures for a short duration and prolonged exposure to lethally high temperature. Plants were subjected to increasing temperatures of 20, 25, 30, 35, and 40 °C for 7 days at each level of temperature [gradual heat stress (GHS)] or exposed to high temperature of 40 °C for 28 days [prolonged heat stress (PHS)] in growth chambers. During the GHS treatment, significant decline in turf quality occurred when plants were exposed to 30 °C for 7 days; simultaneously, malondialdehyde (MDA) content increased and total protein content in shoots decreased significantly compared to those at 20 °C. Protease activity increased at 25 °C and then decreased as temperature was elevated from 30 to 40 °C during the GHS treatment. Amino acid content decreased under GHS, beginning at 25 °C. Under the PHS treatment, turf quality declined and MDA content increased significantly, beginning at 14 days of PHS, while total protein content decreased at 7 days of PHS. Protease activity and amino acid content increased at 7 days of PHS, and then declined with longer stress duration. Our results indicated that protease activity, and amino acid and total protein content were more responsive to GHS or PHS than that of lipid peroxidation and turf quality. Changes in metabolic parameters of protease activity, amino acid and total protein content, and lipid peroxidation may contribute to leaf senescence and poor turf performance under severe or prolonged heat stress conditions for creeping bentgrass.

Free access

Zhongchun Jiang, Chenping Xu, and Bingru Huang

Low nitrogen (N) rates are recommended for creeping bentgrass (Agrostis stolonifera) putting greens to prevent excessive shoot growth and potential nitrate leaching, but low N rates could lead to N deficiency, which induces leaf senescence. This study was conducted to examine the effects of N deficiency on two enzymes involved in organic N metabolism as well as amino acid (AA) and soluble protein (SP) contents in both young and old leaves and roots of creeping bentgrass. Creeping bentgrass plants (cv. Penncross) were grown in a nutrient solution containing either 6 mm nitrate (+N plants) or zero N (−N plants), and each of the two treatments had four replicate pots. Young leaves on upper portions of the stolons and old leaves on lower portions of the stolons were separated and sampled at 14, 21, and 28 days of treatment, and roots were sampled at 28 days. Nitrogen deficiency increased glutamine synthetase (GS) transferase activity in all three tissues and at all three dates and GS biosynthetic activity in young leaves at all three dates. Prolonged N deficiency at 21 and 28 days increased glutamate dehydrogenase (GDH) deamination and amination activities in old leaves. In the roots, N deficiency at 28 days increased GS transferase activity but decreased GDH deamination activity. The N deficiency decreased AA content in all three tissues and at all three dates and SP content in young leaves at all three dates and in old leaves at 21 and 28 days. Decreasing organic N reserves in AA and SP and increasing GS and GDH activities in senescing leaves may be adaptive responses to N deficiency.

Free access

Chenping Xu, Zhongchun Jiang, and Bingru Huang

Nitrogen (N) deficiency inhibits plant growth and induces leaf senescence through regulating various metabolic processes. The objectives of this study were to examine protein changes in response to N deficiency in immature and mature leaves of a perennial grass species and determine major metabolic processes affected by N deficiency through proteomic profiling. Creeping bentgrass (Agrostis stolonifera cv. Penncross) plants were originally fertilized with a diluted 36N–2.6P–5K fertilizer. After 14 days acclimation in a growth chamber, plants were grown in a nutrient solution containing 6 mm nitrate (control) or without N (N deficiency). Immature leaves (upper first and second not yet fully expanded leaves) and mature leaves (lower fully expanded leaves) were separated at 28 days of treatment for protein analysis. Two-dimensional electrophoresis and mass spectrometry analysis were used to identify protein changes in immature and mature leaves in response to N deficiency. The abundance of many proteins in both immature and mature leaves decreased with N deficiency, including those involved in photosynthesis, photorespiration, and amino acid metabolism (hydroxypyruvate reductase, serine hydroxymethyltransferase, alanine aminotransferase, glycine decarboxylase complex, glycolate oxidase), protein protection [heat shock protein (HSP)/HSP 70, chaperonin 60 and FtsH-like protein], and RNA stability (RNA binding protein). The reduction in protein abundance under N deficiency was greater in mature leaves than in immature leaves. The abundance of small HSP and metalloendopeptidase increased under N deficiency only in immature leaves. These results suggest that N deficiency accelerated protein degradation in immature and mature leaves of creeping bentgrass, particularly those proteins associated with energy and metabolism, but to a lesser extent in immature leaves. Immature leaves were also able to accumulate proteins with chaperone functions and for N reutilization, which could protect leaves from senescence under N deficiency.

Free access

Li-Juan Zhang, Tian-Xiu Zhong, Li-Xin Xu, Lie-bao Han, and Xunzhong Zhang

/Fm) remained unchanged in kentucky bluegrass ( Poa pratensis L.) after 10 d of drought stress. DaCosta and Huang (2007) also found that the RWC of velvet bentgrass ( Agrostis canina L.), colonial bentgrass ( Arostis capillaris L.), and creeping bentgrass