Search Results

You are looking at 91 - 100 of 1,085 items for :

  • Refine by Access: All x
Clear All
Free access

Matt Kelting, J. Roger Harris, Jody Fanelli, and Bonnie Appleton

Application of biostimulants, humate-based products marketed as aids to plant establishment, may increase early post-transplant root growth and water uptake of landscape trees. We tested three distinct types of biostimulants on root growth and sapflow of balled and burlapped red maple (Acer rubrum L. `Franksred') trees. Treatments included: humate, 1) as a wettable powder formulation, applied as a soil drench; 2) as a liquid formulation to which various purported root growth—promoting additives had been added, also applied as a soil drench; 3) as a dry granular formulation, applied as a topdress; and 4) a nontreated control. Root growth was monitored through single-tree rhizotrons, and sap flow was measured with a heat balance sapflow system. Roots were first observed in the rhizotron windows 38 days after planting. No biostimulant-treated trees had more root length than nontreated controls, and the two soil drench treatments had the lowest root length throughout the 20 weeks of post-transplant observation. All biostimulants increased sapflow.

Free access

Thomas Björkman

Buckwheat has historically been used to suppress weeds and improve soil condition, but many of the tricks to success have been lost to history. Buckwheat is inexpensive and particularly effective in short windows between crops. We are documenting the techniques of existing experts and complementing that with research. We surveyed northeastern vegetable and strawberry growers to identify what information they need in order to feel confident that they could succeed with a buckwheat cover crop. Top questions include seed availability, types of weeds controlled, relation to other cover crops, volunteer management, and herbicide tolerance. One question tested experimentally was how to establish a full stand with minimum cost. We tested the minimum tillage requirement following pea harvest. No-till resulted in good emergence but slow growth, and dominance by weeds. Disk incorporating the pea residue resulted in excellent growth, which was not further enhanced by chisel plowing before disking. Buckwheat seedlings are intolerant of waterlogging, so deeper tillage may be important in wet years. Sowing buckwheat immediately after tillage resulted in emergence of 35%, leaving gaps large enough for weeds to grow. Waiting 1 week gave an 80% stand and complete weed suppression. Waiting 2 weeks also gave an 80% stand, but weed growth was advanced enough that weed suppression was incomplete. Therefore, a buckwheat cover crop following early vegetables requires light tillage to permit root growth, and up to a week of decomposition. If those provisions are made, complete weed suppression is obtainable.

Full access

Michael B. Thomas, Jonathan H. Crane, James J. Ferguson, Howard W. Beck, and Joseph W. Noling

The TFRUIT·Xpert and CIT·Xpert computerbased diagnostic programs can quickly assist commercial producers, extension agents, and homeowners in the diagnosis of diseases, insect pest problems and physiological disorders. The CIT·Xpert system focuses on citrus (Citrus spp.), whereas the TFRUIT·Xpert system focuses on avocado (Persea americana Mill.), carambola (Averrhoa carambola L.), lychee (Litchi chinensis Sonn.), mango (Mangifera indica L.), papaya (Carica papaya L.), and `Tahiti' lime (Citrus latifolia Tan.). The systems were developed in cooperation with research and extension specialists with expertise in the area of diagnosing diseases, disorders, and pest problems of citrus and tropical fruit. The systems' methodology reproduces the diagnostic reasoning process of these experts. Reviews of extension and research literature and 35-mm color slide images were completed to obtain representative information and slide images illustrative of diseases, disorders, and pest problems specific to Florida. The diagnostic programs operate under Microsoft-Windows. Full-screen color images are linked to symptoms (87 for CIT·Xpert and 167 for TFRUIT·Xpert) of diseases, disorders, and insect pest problems of citrus and tropical fruit, respectively. Users can also refer to summary documents and retrieve management information from the Univ. of Florida's Institute of Food and Agricultural Sciences extension publications through hypertext links. The programs are available separately on CD-ROM and each contains over 150 digital color images of symptoms.

Free access

Guochen Yang, Paul E. Read, and Marihelen Kamp-Glass

Chestnut (Castanea spp.) is considered difficult to micropropagate. The timing for harvesting explant materials from forced stems is critical, although many factors need to be considered for successful micropropagation. Previous research with spirea and five-leaf aralia demonstrated that forcing solution techniques extended the availability of high-quality explant material, thus expediting micropropagation. However, preliminary research illustrated that chestnut is very difficult to force and the new forced softwood growth is very short-lived, which made micropropagation difficult. It was found that, at about 7 days from budbreak, the forced chestnut softwood growth (about 2 cm long) served as the best explant material. If longer than this timing window, the new growth would die. If shorter, the explants had a high contamination rate, exudation of purported phenolic compounds, and explants would not regenerate. Shoot proliferation and callus regeneration were achieved by culturing good-quality explants on Woody Plant Medium supplemented with 0.1 mg BA/liter. The new shoots grew vigorously in vitro with apparent normal morphology.

Full access

Zhanao Deng and Brent K. Harbaugh

Caladium (Caladium ×hortulanum) leaves can be injured at air temperatures below 15.5 °C. This chilling sensitivity restricts the geographical use of caladiums in the landscape, and leads to higher fuel costs in greenhouse production of pot plants because warmer conditions have to be maintained. This study was conducted to develop procedures to evaluate differences among caladium cultivars for chilling sensitivity and to identify cultivars that might be resistant to chilling injury. The effects of two chilling temperatures (12.1 and 7.2 °C) and three durations (1, 3, and 5 days) on the severity of chilling injury were compared for three cultivars known to differ in their sensitivity to low temperatures. Exposure of detached mature leaves to 7.2 °C for 3 days allowed differentiation of cultivars' chilling sensitivity. Chilling injury appeared as dark necrotic patches at or near leaf tips and along margins, as early as 1 day after chilling. Chilling injury became more widespread over a 13-day period, and the best window for evaluating cultivar differences was 9 to 13 days after chilling. Significant differences in chilling sensitivity existed among 16 cultivars. Three cultivars, `Florida Red Ruffles', `Marie Moir', and `Miss Muffet', were resistant to chilling injury. These cultivars could serve as parents for caladium cold-tolerance breeding, and this breeding effort could result in reduced chilling injury in greenhouse production of potted plants, or in new cultivars for regions where chilling occurs during the growing season.

Free access

Loretta J. Mikitzel, Max E Patterson, and John K. Fellman

Walla Walla Sweet onions (Allium cepa L.) have a short storage and marketing season. Studies to determine viable shelf life and to extend post-harvest life with controlled atmosphere (CA) storage were conducted. Onions were exposed to various CA gas mixtures in combination with heat curing (35°C) and/or chlorine dioxide (ClO2) fumigation, to control disease. Preliminary results indicated Botrytis was the primary cause of post-harvest losses. A 1% O2, 5% CO2 atmosphere appeared to maintain onion quality better than other gas mixtures tested during 15 weeks of CA storage (0°C). Carbon dioxide series above 5% show promise in reducing the 35% storage loss that occurred with the 5% CO2 treatment. Curing for at least 72 hours followed by a 1-hour ClO2 fumigation resulted in the least bulb decay and after 15 weeks of storage (1% O2, 5% CO2), 75% of the bulbs were in marketable condition. Onions stored 15 weeks in air (0°C, 70% RH) were unmarketable. Shelf life of freshly harvested onions was 18 days, after which the onions rapidly decayed. After CA storage, shelf life was reduced to 10-14 days due to rapid sprouting. To enjoy a 30-day market window, disease control is necessary for freshly harvested onions and sprouting must be controlled in post-storage onions.

Free access

M.E. Valverde, P. Fallah Moghaddam, M.S. Zavala-Gallardo, J.K. Pataky, O. Paredes-Lopez, and W.L. Pedersen

Ear gall development was evaluated after inoculating sweet corn (Zea mays L.) hybrids with Ustilago maydis (DC) Corda by injecting sporidial suspensions into silk channels when silks had emerged ≈3 to 6 cm from ear shoots. Gall incidence was ≈35% in two inoculation trials. About 0.5% of the noninoculated control plants was infected. Gall weight increased ≈250% to 500% between 14 and 21 days after inoculation, reaching a maximum of ≈280 to 600 g. Gall tissue was nearly 100% black and had lost its spongy integrity 19 to 21 days after inoculation, when mycelial cells formed powdery teliospores. A 1- or 2-day harvest window during which huitlacoche yield and quality were optimized corresponded to the time at which 60% to 80% of the gall tissue was black. The optimal huitlacoche harvest time varied among hybrids from 17 to 19 days after inoculation, but we suspect that optimal harvest time varies from ≈15 to 24 days after inoculation, depending on the growth stage at which the host is inoculated and the environmental conditions following inoculation. Differences among sweet corn hybrids in gall incidence, gall size, and coverage of mature galls by husk leaves were observed and could be used to select sweet corn hybrids that are well suited for producing huitlacoche.

Free access

J.-L. Arsenault, S. Poulcur, C. Messier, and R. Guay

WinRHlZO™ is a new root measuring system (1993) based on an optical scanner instead of a video camera. Scanners produce high-quality images, free of illumination problems, over large areas (typically 11 × 17 inches). They are also extremely easy to use, and do not need to be recalibrated each time the optical set up or the resolution is changed. Different lighting systems are also available. WinRHlZO™ is an interactive system; the user can see on screen with color codes what the system is measuring and can make corrections if needed. WinRHlZO™ has the capacity to detect overlapping root parts and to compensate for them in the final results. It measures total length, projected area, surface area, and root length for different width intervals chosen by the user. The results are shown in a printable histogram placed above the image. The system also counts root tips and branching points. It is possible to verify the width at different points along the root by clicking them in the image. WinRHlZO™ can analyze whole images or different parts of them. It runs on IBM-compatible software under Microsoft Windows 3.1 or NT, and on Macintosh computers.

Free access

Christopher Lindsey, Gate Kline, and Mark Zampardo

An interactive computer-based system was designed to improve student plant identification skills and knowledge of ornamental, cultural, and usage information in a woody landscape plant materials course. The program is written for use under ToolBook, a Microsoft Windows based program, and incorporates 256-color high-resolution images and text into a single interactive computer program. Features include: a slideshow that allows students to select which genera and plant characteristics are to be viewed and in what order with the option of an interactive quiz, seeing the names immediately, or after a delay; side by side comparison of any image or text selection; and encyclopedic entries, all with a user-defined path and pace of study.

The system is being used to study how students learn the information presented to them via computer technology and which program features are most useful for improving identification skills and knowledge of other plant features. The computer tracks and logs all activity by students on the system for analysis.

Free access

J. Roger Harris, Jody Fanelli, and Paul Thrift

Description of early post-transplant root growth will help formulate best transplanting strategies for landscape trees. In this experiment, the dynamics of early root system regeneration of sugar maple (Acer saccharum Marsh. `Green Mountain') and northern red oak (Quercus rubra L.) were determined. Field-grown 4-year-old trees were transplanted bare-root into outdoor root observation containers (rhizotrons) in Oct. 1997, Nov. 1997, or Mar. 1998. All trees were grown in the rhizotrons until Oct. 1998 and then transplanted, with minimally disturbed rootballs, to field soil and grown for an additional two years. October-transplanted trees of both species began root regeneration earlier and regenerated more roots, as judged by accumulated root length on rhizotron windows, than Nov.- or March-transplanted trees. Median date for beginning root extension for sugar maples was 48, 22, and 0 days before budbreak for October-, November-, and Marchtransplanted trees, respectively. Median date for beginning root extension for northern red oak was 4, 21, and 14 days after budbreak for October-, November-, and Marchtransplanted trees, respectively. Height and trunk diameter growth were similar for all treatments within each species for 3 years after application of treatments. Early fall transplanting will result in earlier first season post-transplant root growth for sugar maple and northern red oak. Earlier post-transplant root growth will likely increase resistance to stress imposed by harsh landscape environments.