Search Results

You are looking at 91 - 100 of 344 items for :

  • "water conservation" x
  • Refine by Access: All x
Clear All
Free access

Tzu-Bin Huang and Karen E. Koch

Transpiration, respiration, dry weight gain, and water accumulation were measured to quantify the total carbon balance, total water utilization, carbohydrate cost for fruit growth, and water use efficiency in developing fruit of grapefruit (Citrus paradisi Macf). Rate of net carbon loss and net water loss (mg g-1FW hr-1) both decreased during fruit development. On a whole fruit basis, total carbon demand was reduced during the period of peak expansion, then increased rapidly during fruit maturation. In contrast, whole fruit rates of water loss and water utilization (loss plus accumulation) peaked at about 100 days after anthesis, then decreased toward fruit maturation. Carbohydrate cost for fruit growth was greatest (3.49 g sucrose g-1DW) at the early stage of fruit development (immediately following anthesis), whereas water use efficiency peaked (193 mg DM g-1 H2O) at the final stage of fruit development. The thickness of albedo and pectin content in fruit may contribute to the observed water conservation. Total estimated carbon cost of grapefruit development indicates approximately 120 g of sucrose would be necessary for production of a 450 g fruit (77 g DW) at 22 C.

Free access

Jinmin Fu, Jack Fry, and Bingru Huang

Deficit irrigation is increasingly used to conserve water, but its impact on turfgrass rooting has not been well documented. The objective of this study was to examine the effects of deficit irrigation on ‘Falcon II’ tall fescue (Festuca arundinacea Schreb.) root characteristics in the field using a minirhizotron imaging system. The experiment was conducted on a silt loam soil from the first week of June to mid-Sept. 2001 and 2002 using a mobile rainout shelter under which turf received applications of 20%, 60%, or 100% of actual evapotranspiration (ET) twice weekly. Neither soil water content (0 to 25 cm) nor tall fescue rooting between 4.1- and 50.1-cm depths was affected by irrigation at 60% compared with 100% ET. Despite consistently lower soil water content, tall fescue irrigated at 20% ET exhibited an increase in root parameters beginning in July or August. Tall fescue subjected to 20% ET irrigation had greater total root length and surface area on two of five monitoring dates in 2002 compared with that receiving 100% ET. Evaluation of tall fescue rooting by depth indicated that root proliferation at 20% ET was occurring between 8.7- and 36.3-cm depths. As evaluated under the conditions of this experiment, turfgrass managers using deficit irrigation as a water conservation strategy on tall fescue should not be concerned about a reduction in rooting deep in the soil profile, and irrigation at 20% ET may result in root growth enhancement.

Free access

D.G. Levitt, J.R. Simpson, and J.L. Tipton

Although water conservation programs in the arid southwestern United States have prompted prudent landscaping practices such as planting low water use trees, there is little data on the actual water use of most species. The purpose of this study was to determine the actual water use of two common landscape tree species in Tucson, Ariz., and water use coefficients for two tree species based on the crop coefficient concept. Water use of oak (Quercus virginiana `Heritage') and mesquite (Prosopis alba `Colorado') trees in containers was measured from July to October 1991 using a precision balance. Water-use coefficients for each tree species were calculated as the ratio of measured water use per total leaf area or per projected canopy area to reference evapotranspiration obtained from a modified FAO Penman equation. After accounting for tree growth, water-use coefficients on a total leaf area basis were 0.5 and 1.0 for oak and mesquite, respectively, and on a projected canopy area basis were 1.4 and 1.6 for oaks and mesquites, respectively. These coefficients indicate that mesquites (normally considered xeric trees) use more water than oaks (normally considered mesic trees) under nonlimiting conditions.

Free access

O. Gulsen, R.C. Shearman, K.P. Vogel, D.J. Lee, P.S. Baenziger, T.M. Heng-Moss, and H. Budak

Buffalograss [Buchloe dactyloides (Nutt.) Engelm.] has the potential for increased use as a turfgrass species due to its low maintenance and water conservation characteristics. This study was conducted to estimate diversity and relationships among naturally occurring buffalograss genotypes based on the nuclear genome, using sequence-related amplified polymorphism (SRAP) markers. The 56 genotypes studied represented five ploidy levels collected from diverse geographic locations in the North American Great Plains. In addition, blue grama [Bouteloua gracilis (H.B.K.) Lag. Ex Steud.] and perennial ryegrass (Lolium perenne L.) were included as outgroups. Twenty-five combinations of forward and reverse primers were used. Ninety-five intensively amplified markers were scored and used to infer diversity and relationships among the genotypes. All buffalograss genotypes were discriminated from each other with similarity values ranging from 0.70 to 0.95. Principal component analysis (PCA) suggested that the 56 genotypes could be reduced to 50 due to high similarity levels among some of the genotypes. The distance between buffalograsses, blue grama, and perennial ryegrass were consistent with current taxonomical distances. This research indicates that SRAP markers can be used to estimate genetic diversity and relationships among naturally occurring buffalograss genotypes.

Free access

Michelle Le Strange

In recent years, an estimated 65% of processing tomato acreage has converted from direct seeding to transplanting the crop. Growers have been switching to transplants for a number of reasons, including land use efficiency, water conservation, and weed management. Field studies investigating plant spacing and multiple plants per transplant plug (cell) were initiated when observations by growers indicated that there were seemingly decreased fruit yields from transplanted crops. A transplant density experiment was established in 2004 in a commercial field of processing tomatoes grown on the west side of Fresno County in the San Joaquin Valley, the major tomato production area in California. The field trial investigated in-row spacing (37.5 cm and 75 cm), the number of plants per transplant plug (1, 2, or 3), on a medium vine size variety (Halley 3155) and a large vine size variety (AB2). Individual plots were large enough for mechanical harvest. Yield results indicate that these two varieties responded similarly to increasing plant density. In general, a spacing of 37.5 cm with 2 or 3 plants per plug yielded significantly more than 1 plant per plug, regardless of variety. There was no yield advantage in seeding 3 plants per plug when compared to yields with 2 plants per plug, regardless of variety or in-row plant spacing. A plant spacing of 75 cm with only 1 plant per plug yielded the least.

Full access

Philip J. Kauth and Hector E. Pérez

Native plant sales have increased steadily during the past decade because of consumer concern with invasive plant sales, water conservation, and land management issues. However, native plants are still under-used mostly because of a small market and the lack of education on the use and care of native plants. For example, native plant sales in Florida accounted for only 11% of the total horticultural market in 2005. Within the Florida native plant industry, a small, but competitive market focuses on native wildflowers, but a paucity of information related to opportunities within this segment exists. We sent surveys to 137 members of the Florida native plant industry to learn about their interests, concerns, and trends in the native wildflower market. Survey respondents identified low demand, seed supply, and availability of desired species, plus insufficient customer and industry education as major factors limiting Florida native wildflower (FNW) sales. An overwhelming majority predicted that sales for locally produced FNWs would increase over the next 5 years. Respondents also stated that seed germination, seed storage, and seed production research are vital for the advancement of the industry. This survey provides an excellent opportunity to analyze the current native wildflower market and identify areas to help increase awareness of FNWs.

Free access

Jon Sammons and Daniel K. Struve

Water is quickly becoming one of the world's most precious resources. Micro- and cyclical irrigation are two effective ways that reduce irrigation volume without reducing plant quality. Development of a control mechanism to deliver timely and appropriate irrigation volumes combined with the advantages of micro- and cyclical irrigation will allow maximum water conservation and plant quality. For container-grown nursery plants, the interaction of container geometry and media physical properties dictate the volume of water available for plant uptake. The maximum amount of water a container substrate can hold under gravity is container capacity (CC). We managed season-long irrigation volumes by maintaining CC at three levels; 100% CC; 80% CC; and 60% CC, and used a set irrigation as a commercial control. The results showed similar plant growth for the 100% and set irrigation control groups through the growing season. However, the scheduled regime applied 50% more water than the group maintained at 100% CC. Our system increased water use efficiency without decreasing plant quality.

Full access

Shawn T. Steed, Allison Bechtloff, Andrew Koeser, and Tom Yeager

Mulches have many positive benefits for the production of plants, ranging from weed suppression to water conservation. In this study, a novel method of using plastic film mulch for container-grown plants was evaluated. Plots of 25 japanese privet (Ligustrum japonicum) in #1 (2.5 qt) nonspaced containers were wrapped with 1.25-mil white or black plastic mulch over the top and sides of containers. Small plants were planted through the plastic and grown for 22 weeks with overhead irrigation. Water application amount was determined by moisture sensors placed in the substrate of each treatment. Plant growth, dry weights (DWs), weed fresh weights, weeding time, substrate electrical conductivity (EC), substrate temperature, total water applied, and mulch costs were determined. Black plastic (BP) and white plastic (WP) mulch reduced water applied by 82% and 91%, respectively, compared with the nontreated control (NT). Nontreated control plants grew faster and had greater DW at the end of the experiment. Mulched containers had fewer weeds and required less labor to remove weeds than the NT treatment. Substrate EC level was greater in BP and WP treatments than for the NT after 20 weeks, and plastic mulch did not result in different substrate temperatures. Plastic mulch added $4.94/1000 containers ($2.24 input cost and $2.70 removal cost) to production costs, not including disposal costs. This novel method of mulching nonspaced plants reduced irrigation water, herbicide applications, and weeding labor, but probably added 2–3 weeks to finish time.

Free access

Susan D. Day, Paula Diane Relf, and Marc T. Aveni

A multi-faceted extension education program to reduce consumer contributions to nonpoint source pollution by encouraging proper landscape management was initiated in Prince William County, Va., and funded through the USDA-extension service. The program now is being replicated in several counties in Virginia, primarily in the Chesapeake Bay watershed. The program recruits participants through educational field days, advertisement and other means. Educational techniques include one-on-one assistance from Master Gardener volunteers and the use of Extension publications developed for this program. Publications developed include The Virginia Gardener Easy Reference to Sustainable Landscape Management and Water Quality Protection—a concise reference of Virginia Cooperative Extension landscaping recommendations that includes a calendar for recording fertilizer and pesticide applications, IPM, and other maintenance activities. The Virginia Gardener Guide to Water-wise Landscaping, was recently added to supplement the program in the area of water conservation. In Prince William County, over 700 people have participated. Most of those who complete the program report being more satisfied with their lawn appearance and spending less money. Participation also resulted in consumers being more likely to seek soil test information before applying fertilizer. Other effects include greater participation in leaf composting and grass clipping recycling and greater awareness of nonpoint source pollution.

Free access

Kimberly A. Poff and Jayne M. Zajicek

Uniconizole has great potential for use in both the landscape and nursery industry for improved plant quality, more efficient maintenance techniques, and increased water conservation. A study was conducted to evaluate the effects of uniconizole and methods of application on growth, development, and water use of asiatic jasmine and vinca. Treatments consisted of 1.25 mg A.I., 2.5 mg A.I., or 5 mg A.I. applied in a 25 ml spray or 25 ml soil drench. Another study was conducted to determine if the growth regulation effects could be overcome by direct application of GA. GA3 and GA4+7 were applied at rates of 2.5 mg A.I., 12.5 mg A.I., or 25 mg A.I. in a 25 ml solution after growth reduction had occurred. The 5 mg A.I. uniconizole spray and drench treatments were most effective in reducing growth and whole plant transpiration for asiatic jasmine and vinca respectively. Transpiration per unit leaf area was not reduced for any treatment except for asiatic jasmine at the highest drench rate.