Search Results

You are looking at 91 - 100 of 343 items for :

  • "water conservation" x
  • Refine by Access: All x
Clear All
Free access

Dennis R. Pittenger, David A. Shaw, and William E. Richie

We conducted an evaluation of three commercial weather-sensing irrigation controllers to determine the climatic data they use, how easy they are to set up and operate, and how closely their irrigation regimes match landscape irrigation needs established by previous field research. The devices virtually controlled an existing reference irrigation system and used its system performance data as required in their initial setup. Reference standard treatments for cool-season turfgrass, trees/shrubs and annual flowers were calculated using onsite, real-time reference evapotranspiration (ETo) data and plant factors developed primarily from previous research. The reference irrigation system applied the correct amount of water to an actual tall fescue turfgrass planting whose water needs served as the reference standard treatment comparison for the cool-season turfgrass treatment. Virtual applied water was recorded for other plant materials and it was compared to the corresponding calculated reference standard amount. Results show each controller adjusted its irrigation schedules through the year roughly in concert with weather and ETo changes, but the magnitudes of adjustments were not consistently in proportion to changes in ETo. No product produced highly accurate irrigation schedules consistently for every landscape setting when compared to research-based reference comparison treatments. Greater complexity and technicality of required setup information did not always result in more accurate, water-conserving irrigation schedules. Use of a weather-sensing controller does not assure landscape water conservation or acceptable landscape plant performance, and it does not eliminate human interaction in landscape irrigation management.

Free access

Sloane M. Scheiber, Maria Paz, Edward F. Gilman, Kimberly A. Moore, Sudeep Vyapari, and Richard C. Beeson Jr.

Landscape water consumption has become a prime target for water conservation and regulation. Imposing water restrictions during landscape establishment is detrimental to plants that have not developed sufficient root systems to compensate for transpirational water losses. Generally, municipalities regulate irrigation frequency but not application rate. Application frequency affects establishment rates of shade trees, but the effects on shrub establishment are not well documented. This study evaluated three irrigation frequencies during establishment of Ilex cornuta `Burfordii Nana' and Viburnum odoratissimumin a landscape. To simulate maximum stress, both species were transplanted into field plots in an open-sided, clear polyethylene covered shelter. Each species was irrigated either every 2, 4, or 7 days, and received 9 L of water per plant per event. Predawn, midday, and dusk water potentials were recorded at 28-day intervals and cumulative stress intervals calculated. Water potentials were taken the day prior to irrigation (maximum stress day) and the day of irrigation (minimum stress). Growth indices were also recorded. As days after transplant (DAT) increased, significant declines in cumulative water stress of Ilexwere found among treatments on the day of maximum stress. The 7-day treatment declined at a faster rate than the other treatments tested. No differences were found for Viburnum. No significant differences were found on the day of irrigation as DAT increased. Differences in canopy size were not significant among treatments for either species.

Free access

Jason J. Griffin, William R. Reid, and Dale Bremer

Successful establishment and growth of newly planted trees in the landscape is dependent on many factors. Weed pressure and water conservation are typically achieved with either organic mulches or chemical herbicides applied over the root ball of the newly planted tree. In the landscape, eliminating turfgrass from the root zone of trees may be more complicated than resource competition. Studies have shown that tall fescue (Festucaarundinaceae Schreb.) has allelopathic properties on pecan trees [Caryaillinoiensis (Wangenh.) K. Koch]. Well-manicured tall fescue turf in the landscape may have negative effects on the establishment and growth of landscape trees as well. A study was designed to examine the effects of popular turfgrasses on the growth of newly planted pecan and redbud (Cerciscanadensis L.). Results demonstrate that the presence of turfgrass over the root zone of trees negatively impacts tree growth. Through two growing seasons, every growth parameter measured on redbuds (caliper, height, shoot growth, shoot dry weight, root dry weight, leaf area, and leaf weight) was significantly reduced by the presence of turf. However, the warm season bermudagrass [Cynodondactylon (L.) Pers.] was less inhibitied than the cool season grasses. The affects of turfgrass on pecan growth was less significant; however, caliper, leaf area, and root dry weight were significantly reduced when grown with turf.

Free access

Sloane M. Scheiber, Richard C. Beeson, and Heather Bass

Native plants are often promoted as an approach for water conservation in urban landscapes. However, information regarding plant water needs is based primarily upon anecdotal observations of plant performance. Direct comparisons between native and introduced species using physiological measures of plant water stress are unavailable to support or refute such recommendations. Ligustrum japonicum and Myrica cerifera, representing an introduced and native species, respectively, were transplanted into a fine sand soil to evaluate establishment rates and growth characteristics under two irrigation regimes. Each species was irrigated either daily or every 3 days and received 1.3 cm of irrigation per event for 8 months after transplant. Predawn, midday, and dusk water potentials were recorded on three consecutive days monthly, with cumulative stress intervals calculated. Height, growth indices, shoot dry mass, root dry mass and leaf area were also recorded. Water potential was significantly influenced by day of water stress level. On days without irrigation, water stress was generally greater and affected growth. Myrica irrigated daily had the greatest growth, yet plants receiving irrigation every 3 days had the least growth and greater leaf drop. In contrast, for Ligustrum there were no differences between irrigation regimes in growth responses except for growth index.

Free access

Jon Sammons and Daniel K. Struve

Water is quickly becoming one of the world's most precious resources. Micro- and cyclical irrigation are two effective ways that reduce irrigation volume without reducing plant quality. Development of a control mechanism to deliver timely and appropriate irrigation volumes combined with the advantages of micro- and cyclical irrigation will allow maximum water conservation and plant quality. For container-grown nursery plants, the interaction of container geometry and media physical properties dictate the volume of water available for plant uptake. The maximum amount of water a container substrate can hold under gravity is container capacity (CC). We managed season-long irrigation volumes by maintaining CC at three levels; 100% CC; 80% CC; and 60% CC, and used a set irrigation as a commercial control. The results showed similar plant growth for the 100% and set irrigation control groups through the growing season. However, the scheduled regime applied 50% more water than the group maintained at 100% CC. Our system increased water use efficiency without decreasing plant quality.

Free access

Eric B. Bish, Daniel J. Cantliffe, and Craig K. Chandler

The demand for plug transplants by the Florida winter strawberry (Fragaria ×ananassa Duch.) industry may increase as water conservation during plant establishment becomes more important and the loss of methyl bromide fumigant makes the production of bare-root transplants more problematic. A study was conducted during the 1995-96 and 1996-97 seasons to determine the effect of container size and temperature conditioning on the plant growth and early season fruit yield of `Sweet Charlie' strawberry plants. Plants in containers of three sizes (75, 150, and 300 cm3) were grown in one of two temperature-controlled greenhouses (35 °C day/25 °C night or 25 °C day/15 °C night) for the 2 weeks just prior to transplanting into a fruiting field at Dover, Fla. Plants exposed to the 25/15 °C treatment had significantly higher average root dry weights at planting in 1995 and 1996 than did plants exposed to the 35/25 °C treatment. Plants exposed to the 25/15 °C treatment also had higher average fruit yields than the plants exposed to the 35/25 °C treatment (48% and 18% higher in 1995-96 and 1996-97, respectively). The effect of container size on plant growth and yield was variable. Plants propagated in the 150- and 300-cm3 containers tended to be larger (at planting) than the plants propagated in the 75-cm3 containers, but the larger container sizes did not result in consistently higher yields.

Free access

O. Gulsen, R.C. Shearman, K.P. Vogel, D.J. Lee, P.S. Baenziger, T.M. Heng-Moss, and H. Budak

Buffalograss [Buchloe dactyloides (Nutt.) Engelm.] has the potential for increased use as a turfgrass species due to its low maintenance and water conservation characteristics. This study was conducted to estimate diversity and relationships among naturally occurring buffalograss genotypes based on the nuclear genome, using sequence-related amplified polymorphism (SRAP) markers. The 56 genotypes studied represented five ploidy levels collected from diverse geographic locations in the North American Great Plains. In addition, blue grama [Bouteloua gracilis (H.B.K.) Lag. Ex Steud.] and perennial ryegrass (Lolium perenne L.) were included as outgroups. Twenty-five combinations of forward and reverse primers were used. Ninety-five intensively amplified markers were scored and used to infer diversity and relationships among the genotypes. All buffalograss genotypes were discriminated from each other with similarity values ranging from 0.70 to 0.95. Principal component analysis (PCA) suggested that the 56 genotypes could be reduced to 50 due to high similarity levels among some of the genotypes. The distance between buffalograsses, blue grama, and perennial ryegrass were consistent with current taxonomical distances. This research indicates that SRAP markers can be used to estimate genetic diversity and relationships among naturally occurring buffalograss genotypes.

Free access

Michelle Le Strange

In recent years, an estimated 65% of processing tomato acreage has converted from direct seeding to transplanting the crop. Growers have been switching to transplants for a number of reasons, including land use efficiency, water conservation, and weed management. Field studies investigating plant spacing and multiple plants per transplant plug (cell) were initiated when observations by growers indicated that there were seemingly decreased fruit yields from transplanted crops. A transplant density experiment was established in 2004 in a commercial field of processing tomatoes grown on the west side of Fresno County in the San Joaquin Valley, the major tomato production area in California. The field trial investigated in-row spacing (37.5 cm and 75 cm), the number of plants per transplant plug (1, 2, or 3), on a medium vine size variety (Halley 3155) and a large vine size variety (AB2). Individual plots were large enough for mechanical harvest. Yield results indicate that these two varieties responded similarly to increasing plant density. In general, a spacing of 37.5 cm with 2 or 3 plants per plug yielded significantly more than 1 plant per plug, regardless of variety. There was no yield advantage in seeding 3 plants per plug when compared to yields with 2 plants per plug, regardless of variety or in-row plant spacing. A plant spacing of 75 cm with only 1 plant per plug yielded the least.

Free access

Jinmin Fu, Jack Fry, and Bingru Huang

Deficit irrigation is increasingly used to conserve water, but its impact on turfgrass rooting has not been well documented. The objective of this study was to examine the effects of deficit irrigation on ‘Falcon II’ tall fescue (Festuca arundinacea Schreb.) root characteristics in the field using a minirhizotron imaging system. The experiment was conducted on a silt loam soil from the first week of June to mid-Sept. 2001 and 2002 using a mobile rainout shelter under which turf received applications of 20%, 60%, or 100% of actual evapotranspiration (ET) twice weekly. Neither soil water content (0 to 25 cm) nor tall fescue rooting between 4.1- and 50.1-cm depths was affected by irrigation at 60% compared with 100% ET. Despite consistently lower soil water content, tall fescue irrigated at 20% ET exhibited an increase in root parameters beginning in July or August. Tall fescue subjected to 20% ET irrigation had greater total root length and surface area on two of five monitoring dates in 2002 compared with that receiving 100% ET. Evaluation of tall fescue rooting by depth indicated that root proliferation at 20% ET was occurring between 8.7- and 36.3-cm depths. As evaluated under the conditions of this experiment, turfgrass managers using deficit irrigation as a water conservation strategy on tall fescue should not be concerned about a reduction in rooting deep in the soil profile, and irrigation at 20% ET may result in root growth enhancement.

Full access

Glenn D. Israel, Janice O. Easton, and Gary W. Knox

The Florida Cooperative Extension Service (FCES) teaches residents the importance of proper landscaping practices. FCES offers several educational programs that teach residents how to integrate energy and water conservation, pest management, and waste recycling practices into their home landscapes. In 1997, extension staff and volunteers planned and conducted environmental landscape management (ELM) programs resulting in >800,000 customer contacts. A survey was conducted to measure the adoption of recommended best management practices by program participants and nonparticipants. Results show that, of 39 practices examined, Master Gardener trainees increased the number of practices used by an average of 7.3, while educational seminar and publications-only participants increased by an average of 4.5 and 2.8 practices, respectively. Nonparticipants showed essentially no change. When practices are examined one at a time, the Master Gardeners made statistically significant increases in 28 of the 39 recommended practices. Educational seminar and publications-only participants made similar gains in 31 and 6 practices, respectively, and the nonparticipant comparison group made significant increases in 2 practices and decreases in 8. The results suggest that the publications-only strategy for delivering information to homeowners is less effective than strategies combining educational seminars or intensive training with relevant publications.