Search Results

You are looking at 91 - 100 of 1,416 items for :

  • Refine by Access: All x
Clear All
Open access

D. E. Whiting, P. C. Crandall, and C. G. Woodbridge

Abstract

Boron was applied to the surface of 3 southern Washington soils at rates of 0, 3.4, 6.7, and 13.4 kg/ha. Levels of hot-water-extractable B were measured annually to a depth of 90 cm for 3-5 years following application. Soils ranged from medium to high in B retention capacity. Once the B retention capacity of the soils was satisfied, additional B leached readily through the profile. The same amounts of B were applied to the same soil types in 3 commercial pear orchards to determine the effects on plant uptake. Blossom, leaf, and fruit levels of ‘Bartlett’ pear (Pyrus communis L.) were little affected by the applications, even though the extractable soil B levels were high. This failure to obtain uptake may be explained by dry soil conditions and reduced root activity resulting from low rainfall and low soil temperatures.

Open access

E. E. Albregts and C. M. Howard

Abstract

Strawberries (Fragaria × ananassa Duch.) were grown for 3 seasons on a well-drained fine sand which received 0, 4.5, 9, 18, and 36 metric tons (MT)/ha of poultry manure annually. Fruit yields increased each season with increased rates of manure up to 18 MT/ha. The 36 MT/ha rate caused a foliage burn during the first 3 seasons which may have reduced yields. Considerable leaching of the soluble nutrients from manure to and below the 60-cm soil depth occurred from season to season. Analyses of saturated soil extracts indicated that concentrations of soluble salts, K, and NO3–N increased with increasing rates of manure at all 4 depths to 60 cm. The Ca, K, and Mg concentrations at all 4 soil depths increased with increased manure rates and generally decreased with depth. Organic matter content of the surface 15 cm of the soil increased with increased manure rate. Soil pH was only slightly affected by the manure treatments.

Free access

Catherine S.M. Ku and David R. Hershey

Poinsettias (Euphorbia pulcherrima Willd. ex Klotzsch `V-14 Glory') grown as single-pinched plants and received constant fertigation of Hoagland solution with N at 210 mg·L-1 of 100% NO3-N or 60% NO3-N : 40% NH4-N; P at 7.8 and 23 mg·L-1; and leaching fractions (LFs) of 0, 0.2, or 0.4. The P at 23 mg·L-1 used in this study was about half the P concentration typically provided from a 20N-4.4P-16.6K fertilizer at 200 mg·L-1 N fertigation. The total P applied via fertigation ranged from 51 mg at the 0 LF to 360 mg at the 0.4 LF. The leachate P concentration ranged from 0.2 to 46 mg·L-1. With P at 7.8 mg·L-1, the percentage of total P recovered in the leachate was 6% to 7%. At 23 mg·L-1 P fertigation, however, the total P recovered in the leachate with 60% NO3-N treatment was 2-times greater than with 100% NO3-N treatment. This result is attributed to a lower substrate pH, which resulted from NH4-N uptake and nitrification processes with 60% NO3-N fertigation. The P concentration in the recently matured leaves with 7.8 mg·L-1 P fertigation was in the normal range of 0.3% to 0.6%. Fertigation P can be reduced by up to 80% and still be sufficient for producing quality poinsettias. Reducing the fertigation P concentration is beneficial because it reduces P leaching, reduces fertilizer costs, and reduces luxury consumption.

Free access

J.P. Syvertsen and M.L. Smith

Four-year-old `Redblush' grapefruit (Citrus paradisi Macf.) trees on either the relatively fast-growing rootstock `Volkamer' lemon (VL) (C. volkameriana Ten. & Pasq.) or on the slower-growing rootstock sour orange (SO) (C. aurantium L.) were transplanted into 7.9-m3 drainage lysimeter tanks filled with native Candler sand, irrigated similarly, and fertilized at three N rates during 2.5 years. After 6 months, effects of N application rate and rootstock on tree growth, evapotranspiration, fruit yield, N uptake, and leaching were measured during the following 2 years. When trees were 5 years old, low, medium, and high N application rates averaged about 79,180, or 543 g N/tree per year and about 126,455, or 868 g N/tree during the following year. Recommended rates average about 558 g N/tree per year. A lysimeter tank with no tree and additional trees growing outside lysimeters received the medium N treatment. Nitrogen concentration in the drainage water increased with N rate and exceeded 10 mg·liter-1 for trees receiving the high rates and also for the no tree tank. Leachate N concentration and total N recovered was greater from trees on SO than from those on VL. Average N uptake efficiency of medium N rate trees on VL was 6870 of the applied N and 61 % for trees on SO. Nitrogen uptake efficiency decreased with increased N application rates. Trees outside lysimeters had lower leaf N and fruit yield than lysimeter trees. Overall, canopy volume and leaf N concentration increased with N rate, but there was no effect of N rate on fibrous root dry weight. Fruit yield of trees on SO was not affected by N rate but higher N resulted in greater yield for trees on VL. Rootstock had no effect on leaf N concentration, but trees on VI. developed larger canopies, had greater fibrous root dry weight, used more water, and yielded more fruit than trees on SO. Based on growth, fruit yield and N leaching losses, currently recommended N rates were appropriate for trees on the more vigorous VL rootstock but were 22% to 69 % too high for trees on SO.

Open access

Richard T. Poole and Charles A. Conover

Abstract

Method of fertilization application and leaching had little effect on response of Dieffenbachia maculata (Lodd.) G. Don ‘Perfection’ (dumbcane) and Brassaia actinophylla Endl. (schefflera). The recommended fertilizer rate increased top but reduced root growth. Plants utilized 5 to 10% more water when leached. In a second experiment, plant grade and vegetative growth decreased with a decrease in the fertilizer rate but root grade and growth increased. Plants growing in the peat/sand (3:1) potting medium were rated superior to plants in the peat/bark/shavings (2:1:1) medium. Leaching with 10% excess water or fertilizer solution slightly improved plant response of schefflera, but overall data indicate leaching of pots is unnecessary for short term foliage crops fertilized properly. Increased fertilizer rates increased water utilization efficiency and vegetative growth, but reduced root growth.

Free access

Robert H. Stamps

Established leatherleaf fern was grown for one year in a glasshouse in intact soil columns (Astatula fine sand, 21 × 61 cm) contained in drainage lysimeters. Columns were fertilized at rates of 224, 448, or 672 kg N ha-1 yr-1 using controlled-release (CR) fertilizer, either 360-day (360CR) or 180-day (180CR) term, or weekly applications of liquid (L) fertilizer. Water use, yield (number of harvestable fronds) and average frond weight increased linearly with increasing fertilization rate and more fronds were produced using L than CR fertilizers. Frond color measurements paralleled yield results. During cool weather when vase life is greatest, fronds from L fertilizer lysimeters lasted longer than fronds from CR treated plots. During warmer weather, treatments had no effect on vase life. Nitrate nitrogen (NO3-N) leaching increased with fertilization rate and exceeded 10 ppm in leachate from the L and 180CR treatments at all application rates. NO3-N in leachate from 360CR lysimeters never exceeded 8 ppm at any application rate.

Free access

Catherine S.M. Ku and David R. Hershey

Geranium `Yours Truly' in 15-cm diameter plastic pots were greenhouse-grown as single pinched plants in a completely randomized design. Plants were irrigated with 300 mg/liter N from 20N-4.4P-16.6K with leaching fractions (LF) of 0, 0.1, 0.2, and 0.4. There were 24 irrigations during the 8-week study. Plants with LF of 0.2 and 0.4 had 46% greater leaf area, 40% greater top fresh weight, and 37% greater top dry weight than plants with LF of 0 and 0.1. By week 5 the leachate electrical conductivity (EC) for LF of 0.1, 0.2, and 0.4 had increased from about 3 dS/m initially to 12, 8, and 4 dS/m, respectively. At harvest, medium ECe was 7, 4, 3, and 2 dS/m for LF of 0, 0.1, 0.2, and 0.4, respectively. At harvest, medium pH was the same in the top, middle, and bottom thirds of the pot. At harvest medium ECe with LF of 0.1, 0.2, and 0.4 was 47, 68, and 60% lower in the bottom two-thirds of the pot than in the top third. With a LF of 0 the medium ECe was not lower in the bottom of the pot. Minimizing the LF for potted geraniums substantially reduced plant growth.

Free access

Mark V. Yelanich and John A. Biernbaum

`V-14 Glory' poinsettias (Euphorbia pulcherrima Willd. ex Klotzsch) were fertilized at every irrigation with solutions containing 7, 14, or 28 mol N/m3 at four leaching fractions (LFs) of 0, 0.1 to 0.2, 0.3 to 0.4, or 0.5 to 0.6 or with subirrigation. The N applied ranged from 44 to 464 mmol/pot applied over 12 to 25 irrigations. Medium NO3-N and K concentrations and electrical conductivity were highest at the highest fertilizer concentration and lowest LF throughout cropping. Phosphorous concentration in the medium declined until week 12, when phosphoric acid was added for pH adjustment. Subsequently, medium P concentration was highest in treatments with the highest LF. Final shoot height, plant dry mass, and leaf area decreased as fertilizer concentration increased. Highest fresh mass, bract area, and shoot: root ratio were obtained with 14 or 28 mol N/m3 and a 0.55 LF or with 7 mol N/m3 and a 0.15 LF. Leaf N concentration was lower with subirrigation than with surface application. Leaf P and Mg were lower at higher LFs or with subirrigation, but leaf K was not influenced by the treatments.

Free access

Jesse R. Quarrels and Steven E. Newman

A leaching frame was constructed to detect residual plant growth regulators in media. The table was 0.9 × 1.8 m and designed to hold 40 10-cm diameter by 30-cm PVC cylinders. Each cylinder was cut lengthwise in half and resealed with duct tape. Rooted cuttings of `Freedom' poinsettias were planted into each cylinder using two media combinations: 2 vermiculite: 2 peat moss: 1 pine bark and 2 vermiculite: 1 peat moss: 2 pine bark (by volume). Four growth regulator treatments were applied to the medium two weeks after transplanting: control, 0.25 mg paclobutrazol, 0.25 mg uniconazole, and 0.125 mg paclobutrazol applied as spike. After plant growth was recorded, the cylinders were removed and sliced lengthwise. Snapdragon plugs were then transplanted into the medium along the length of the cylinder to determine if any residual paclobutrazol remained. Paclobutrazol and uniconazole reduced stem length. The presence of pine bark in the media reduced the effect of the plant growth regulators.

Free access

T.E. Bilderback

Research reports documenting phosphorus leaching from soilless container media has changed commercial nursery phosphorus fertilizing practices. However, rhododendron growers are concerned that phosphorus levels are adequate as plants begin setting flower buds in July and August. Medium solution of 10 to 15 ppm P are recommended. Five replicated leachate samples were collected from 6 phosphate sources for 11 weeks following surface application to 2 container grown rhododendron cultivars. Each fertilizer source wax blended to an analysis of 14.0N-11.2P-5.0K except a 14.0N-0P-5.0K control. Phosphate sources included Diammonium Phosphate, Triple superphosphate, Sulfur coated Diammonium Phosphate, Sulfur coated triple superphosphate, and a commercial rhododendron sulfur coated fertilizer. With the exception of control, all treatment leachate phosphorus levels ranged from 180 to 145 ppm two days and 85 to 75 ppm one week after application. All sources ranged from 45 to 10 ppm weeks 2-5 and were lower than 10 ppm weeks 7-11. Leachate levels of the control were below 10 ppm at all sample times. Bud set and foliar P levels were different among phosphate treatments, but growth index measurements were not significant.