Search Results

You are looking at 91 - 100 of 12,220 items for :

  • Refine by Access: All x
Clear All
Free access

Patricia Garriz, Hugo Alvarez, and Graciela Colavita

Poster Session 50—Pomology–Physiology/Plant Growth Regulators 21 July 2005, 1:15–2:00 p.m. Poster Hall–Ballroom E/F

Free access

Justine E. Vanden Heuvel and Carolyn J. DeMoranville

and is being planted with greater frequency in Massachusetts ( Roper, 1999 ). Little attempt has been made to document the growth of both fruit and vines in a modern commercial cranberry production setting. Chandler (1952) originally described the

Open access

Zhengyu Huang and Kimberly Ann Falco

Plant responses to plant growth regulators (PGRs) often include increases in size, biomass, and yield, thereby differentiating them from other pesticides (e.g., herbicides, fungicides, insecticides), which often include damage, inhibition, or

Free access

Mario Pérez-Grajales, Víctor A. González-Hernández, Ma. Carmen Mendoza-Castillo, Cecilia Peña-Valdivia, Aureliano Peña-Lomelí, and Jaime Sahagún-Castellanos

Six manzano hot chile pepper landraces (Capsicum pubescens R & P) were evaluated to identify genotypes which might contribute toward obtaining superior hybrids by providing the following characteristics: low height, short internodes, rapid biomass accumulation, high harvest index, high fruit quality, and high photosynthetic rate. The landraces studied were `Chiapas', `Huatusco I', `Huatusco II', `Perú', `Puebla', and `Zongolica'. Plants were grown in a shaded glasshouse for 9 months, with drip irrigation. Growth, biomass distribution, fruit quality and yield were determined. All varieties exhibited advantageous characteristics, i.e., large fruit (60 mL) with thick pericarp (4.2 mm) in `Puebla'; short internodes (10 cm) in `Zongolica' and `Huatusco II'; high harvest index (0.24), high yield (18 to 19 t·ha−1) and high relative growth rates (0.12 g·g−1·d−1) in `Perú' and `Puebla'; and high dry mass accumulation (450 g/plant) in `Chiapas'. The highest photosynthesis rate in manzano hot pepper was 7.7 μmol of CO2/m2/s at 500 μmol photons/m2/s, in `Zongolica' and `Puebla'.

Free access

Wei Qiang Yang and Barbara L. Goulart

Aluminum (Al) and phosphorus (P) interactions were investigated in mycorrhizal (M) and nonmycorrhizal (NM) highbush blueberry (Vaccinium corymbosum L.) plantlets in a factorial experiment. The toxic effects of Al on highbush blueberry were characterized by decreased shoot, root, and total plant dry mass. Many of the negative effects of Al on plant root, shoot, and total dry matter production were reversed by foliar P and N application, indicating P or N uptake were limited by high Al concentration. However, Al-mediated growth reduction in P-stressed plants indicated that the restriction of P uptake by high Al may not have been the only mechanism for Al toxicity in this experiment. Root Al and P concentration were negatively correlated in NM but not M plantlets, suggesting mycorrhizal infection may alter P uptake processes. Al uptake was also affected by mycorrhizal infection, with more Al accumulating in M plantlet roots and leaves. Correlations among foliar ion concentrations were also affected by mycorrhizal fungal infection.

Free access

Martin Makgose Maboko and Christian Phillipus Du Plooy

farmers in South Africa ( Maboko et al., 2012a ). For good fruit set and better yield, pollination, germination of pollen grains, pollen tube growth, fertilization, and fruit initiation must take place successfully ( Kinet and Peet, 1997 ). Pepper plants

Free access

Ertan Yildirim, Huseyin Karlidag, Metin Turan, Atilla Dursun, and Fahrettin Goktepe

decrease negative environmental impacts resulting from inefficient use of chemical fertilizers is inoculation with plant growth promoting rhizobacteria (PGPR). These bacteria exert beneficial effects on plant growth and development and therefore may be used

Full access

Jasim Uddain, Sanzida Islam Tripti, Mohammad Shah Jahan, Nasrin Sultana, Md Jahedur Rahman, and Sreeramanan Subramaniam

al., 2015 ). Vermicompost also significantly stimulates the growth and productivity of plants ( Edwards, 1998 ). Vermicompost is used as organic fertilizer to improve soil aeration and enhance soil microorganisms, plant growth, and eventually crop

Free access

Muntubani D.S. Nzima, George C. Martin, and Chic Nishijima

We investigated the development of leaf area (LA) and the distribution of dry matter within branches of 25-year-old, alternate-bearing `Kerman' pistachio (Pistacia vera L.) trees that were in their natural “on” (heavy) or “off” (light) bearing cycles to determine the immediate and delayed effects of fruiting on shoot growth. Compared to “off” trees, individual leaves of “on” trees were greater in number and expanded twice as fast during the first 30 days after full bloom (FB) (FB + 30). Mature, fully expanded leaves of “on” trees were smaller (124.1±3.26 cm2) than those from “off” tree (163.3±3.40 cm2), indicating delayed demands of fruiting on initial leaf growth. Total LA per current shoot was greater in “on” than “off” trees because shoots of “on” trees averaged eight leaves, compared with six for “off” trees. More inflorescence buds per shoot (seven vs. three buds) abscised from “on” than from “off” trees. About 60% of the young developing nuts had abscised by FB + 30 when they weighed <250 mg each and another 25% abscised between FB + 30 and FB + 60 when individual nuts weighed ≈400 mg. The average total dry mass (DM) of individual branches of “on” trees increased 1322% (5·9 to 83·9 g) compared to 598% (4·2 to 29·3 g) in “off” trees. Besides nuts, leaves accumulated the greatest amount of dry matter within individual branches followed in decreasing order by current wood, 1-year-old wood, and inflorescence buds. DMs of individual leaves of “on” trees averaged between 15% and 48% greater than leaves of “off” trees. “Off” trees invested 4.6 g of dry matter into individual 1-year-old wood and 2.1 g into current wood. “On” trees, however, invested 1.3 g of dry matter into 1-year-old wood and 4.3 g of dry matter into current wood. One-year-old wood was an important major source of carbohydrates for developing leaves, current wood, rachises, and nuts. The immediate demands of fruiting on individual components of a branch were measured as losses in DMs. Individual leaves, current wood, 1-year wood, and rachises lost 1.1%, 0.3%, 1.1%, and 1.0%, respectively, of the average total DMs of individual branches of “on” trees. This loss was equivalent to 5.7%, 5.9%, 26.7%, and 16.4%, respectively, of the seasonal average peak DMs of the respective individual components of the branch.

Free access

Marc van Iersel

107 POSTER SESSION (Abstr. 665–676) Growth and Development–Floriculture