Search Results

You are looking at 91 - 100 of 526 items for :

  • "fatty acid" x
  • Refine by Access: All x
Clear All
Free access

Benjamin Jeyaretnam, Hazel Y. Wetzstein, Sharad C. Phatak, and Russel W. Carlson

Changes in lipid and total protein content of somatic embryos of pecan (Carya illinoinensis) were estimated during maturation, cold treatment alone (3, 5, or 8 weeks) or cold followed by dessication (3, 5, or 7 days). Triglyceride was estimated colorimetrically and methyl esters of fatty acids were analyzed by GC-MS. Total protein was extracted from the same tissue with 2% SDS in Tris·HCL buffer. Triglyceride content of enlarged somatic embryos was significantly lower than zygotic embryos and further declined after 5 weeks cold treatment. An even greater decline was observed during the desiccation treatment. The most abundant fatty acids in small and enlarged somatic embryos are linolenic > palmitic > oleic > stearic acid. However, the molar ratio of linolenic to oleic reached 1:1 after 5 weeks of cold treatment. During enlargement, protein content increased to levels found in zygotic embryos, with desiccation resulting in further elevation.

Free access

Dana F. Faubion and Adel A. Kader

California grown `Hass' avocado fruit were stored at 5C, in air or a controlled atmosphere (CA) of 2% oxygen and 5% carbon dioxide. Fruit were evaluated at 0, 3, 6, and 10 weeks, both immediately upon removal from storage and after 5 days at 20C. Severe chilling injury developed in the air-stored fruit after six weeks, while only moderate symptoms were observed in CA stored avocado fruit after 10 weeks. Lipid peroxidation breakdown products increased during storage and ripening in both air and CA treatments. Sterols, sterol esters, glycolipids, and phospholipids were analyzed. There was a shift in composition during storage towards increasingly saturated fatty acids. The fatty acid shift was greater in air, than in CA stored fruit. Results will be discussed concerning their relevance to chilling injury development.

Free access

Niels O. Maness, Jamal Bizri, Michael W. Smith, C. Zhang, and Gerald H. Brusewitz

Partial oil extraction is being investigated as a means to increase oxidative stability and provide reduced fat pecan halves. Supercritical extraction with carbon dioxide provided a means to extract twenty to thirty percent of resident oil, with little to no kernel damage and leaving no harmful residues in the kernel or the extracted oil. Variances in extraction time, temperature, pressure and total carbon dioxide volume used for extraction with a continuous flow extractor will be discussed. Fatty acid composition of oils extracted using supercritical carbon dioxide was essentially the same as oils obtained by solvent extraction and by cold press. Fatty acid yield in the oils was greater for supercritical extraction compared to the other two methods. Oxidative stability for extracted and unextracted pecans, determined using an accelerated aging technique, will be compared. Supported by USDA grant 92-34150-7190 and the Oklahoma Agricultural Experiment Station.

Free access

Dehua Liu, Miklos Faust, Helen A. Norman, Merle Millard, and Garry W. Stutte

Membrane lipids and cellular water states were studied in endodormant and paradormant apple buds. Paradormancy was overcome by thidiazuron while endodormant buds were forced to break after a certain period of chilling. Nuclear magnetic resonance imaging was used to determine water states in buds of different stages of dormancy. In endodormant buds, the changes in water states from a more tightly-bound to a more free form were correlated with changes in membrane fatty acid composition. The ratio of saturated/unsaturated fatty acids decreased with chilling, especially in C18:l/C18:3 molecular species of phosphatidylcholine and phosphatidylethanolamine. Bud lipase activity, which was assayed by in vitro hydrolysis of triglycerides, showed an abrupt increase after chilling treatments.

Free access

Raymond A. Cloyd and Nina L. Cycholl

A greenhouse study was conducted from Oct. 1999 through Feb. 2000, and Mar. 2001 through Apr. 2001, to determine the potential phytotoxic effects of selected insecticides on Spanish lavender (Lavandula stoechas L.), oregano (Origanum vulgare L. `Santa Cruz'), rosemary (Rosmarinus officinalis L.), St. Johnswort (Hypericum perforatum L. `Topaz'), wolly thyme (Thymus vulgaris L. `Wolly'), and nutmeg thyme (Thymus vulgaris L. `Nutmeg'). Insecticides used for the study were Beauveria bassiana Strain GHA, pyrethrin [+ piperonyl butoxide (PBO)], azadirachtin, potassium salts of fatty acids, two rates of cinnamaldehyde, paraffinic oil, and capsaicin. Visual observations of phytotoxicity were made 7 days after the final application. Pyrethrin, potassium salts of fatty acids, and both rates of cinnamaldehyde were consistently more phytotoxic than the other insecticides. Despite the phytotoxic effects from some of the insecticides, new growth that emerged following treatments compensated for the initial damage, and the herbs were still saleable.

Free access

Lorenzo León, Luis M. Martín, and Luis Rallo

Thirteen characters were evaluated over four years in progenies from a diallel cross among the olive (Olea europaea L.) cultivars `Arbequina', `Frantoio', and `Picual' to determine if phenotypic correlations existed between these characters. Yield per tree, ripening date, oil yield components and fatty acid composition were recorded annually once seedlings began to flower and produce fruit. Significant correlations were found between several characters including oil yield components and fatty acids composition. Lower correlation coefficients were obtained between ripening date and oil and oleic acid content. Generally, yield was not correlated with the other characters evaluated. Principal components analysis confirmed the main correlations among characters and showed them to be independent of the parents used.

Free access

Shiow Y. Wang and Miklos Faust

The changes of membrane lipids in apple (Malus domestics Borkh. cv. Delicious) auxillary and terminal buds from August to April were determined. The predominant lipids were monogalactosyl diglyceride (MGDG), digalactosyl diglyceride (DGDG), phosphatidylcholine (PC), and phosphatidylethanolamine (PE). An increase in membrane polar lipids was associated with budbreak and bud growth from August to April. Linolenic acid was the predominant fatty acid in MGDG, DGDG, and PC, while linoleic acid was predominant in PE. Phosphatidylglycerol (PG) and phosphatidylinositol (PI) contained a high amount of palmitic acid. The ratio of (18:2 + 18:3) to 18:1 fatty acids in galactolipids in apple buds increased from August to April. ß-Sitosterol and sitosteryl ester were the predominant sterols in apple buds. An increase in sitosterol, a decrease in sitosteryl ester, and a decline in the ratio of free sterols to phospholipids occurred during budbreak in spring. A decrease in sitosterol was associated with bud expansion in spring.

Free access

Mariya Khodakovskaya, Richard McAvoy, Hao Wu, Jeanne Peters, and Yi Li

Chill injury and leaf senescence occur in plants held in prolonged cold, dark storage. To increase tolerance to these conditions, Nicotiana alata and N. tabacum were transformed with either the FAD7 or IPT genes under the control of a cold-inducible promoter (cor15a). FAD7 encodes for omega-3-fatty acid desaturase and was used to resist cold-stress. IPT encodes the cytokinin-pathway enzyme isopentenyl transferase and was used to delay senescence. Independent FAD7 and IPT lines were crossed to produce double transgenic seed. Seedlings from single transgenic (cor15a-IPT or cor15a-FAD7) lines, double transgenic lines, and the wild-type were exposed to prolonged cold, dark conditions. After 3 months in the dark at 2 °C, survival of independent double transgenic N. tabacum lines ranged up to 80% to 90%. However only 40% of FAD7 seedlings survived, 10% of IPT seedlings survived, and no wild-type plants survived. Double transgenic N. alata seedlings average 90% survival under similar conditions and RT-PCR revealed expression of both the IPT and FAD7 genes. Omega-3-FAD enzyme activity increases desaturation in chloroplast membrane fatty acids. When exposed to prolonged cold, the molecular fraction of polyunsaturated fatty acids (18:3 and 16:3) in leaves of wild-type N. alata decreased while monounsaturated (16:1 and 18:1) and saturated fatty acid species (16:0 and 18:0) increased dramatically. In double transgenic N. alata lines exposed to prolonged cold, the molecular fraction of 18:3 and 16:3 increased, while the 16:0 and 18:0 species decreased dramatically compared to nonchilled double transgenic plants.

Free access

Dana F. Faubion and Adel A. Kader

California-grown `Hass' avocado fruit were stored at 5C, in air or a controlled atmosphere (CA) of 2% oxygen and 5% carbon dioxide. Fruit were evaluated at 0, 2, 4, 6, 8, 10, and 12 weeks, both immediately upon removal from storage and after ripening at 20C. Severe chilling injury (flesh browning) developed in the airstored fruit after 6 weeks, while only moderate symptoms were observed in CA-stored avocado fruit after 12 weeks. Lipid peroxidation breakdown products increased during storage and ripening in both air and CA treatments. Sterols, steryl esters, steryl glycosides, glycolipids, and phospholipids were analyzed. Quantity of acylated steryl glycoside in ripe fruit changed from 34 nmoles initially, to 51 or 27 nmoles after 6 weeks at 5C in air or CA, respectively. Glycolipid fatty acid unsaturation in air-stored fruit decreased with the development of chilling injury. Fatty acid unsaturation in phospholipids (phosphatidylinositol, phosphatidylcholine, phosphatidylglycerol, and phosphatidylethanolamine) of air-stored avocados decreased with the development of chilling injury. CA storage delayed the development of chilling injury and the loss of fatty acid unsaturation.

Free access

S.A. Balch, C.B. McKenney, and D.L. Auld

The oil of evening primrose (Oenothera sp.) is an important source of gammalinolenic acid (GLA). GLA [C18:3Δ6,9,12] is an unsaturated fatty acid in demand for its nutritional and pharmaceutical application. Oenothera biennis L. is the primary commercial source of evening primrose oil. A study was conducted to determine if species of Oenothera, adapted to Texas, produce GLA levels comparable to O. biennis. This project identified and evaluated the fatty acid composition of eight species of evening primrose native to Texas. GLA levels of 54 accessions evaluated from collected seed ranged from 0.0% to 11.0%. Field experiments were then conducted to determine oil content, fatty acid composition, seed yield, and potential adaptation to commercial production of selected accessions. Mean GLA levels of cultivated seed from these accessions ranged from 0.0% to 10.1%. Mean seed oil content ranged from 7.3% to 21.7%. Of the species examined, O. elata subsp. hirsutissima (A. Gray ex S. Watson) W. Dietrich and O. jamesii (Torrey & Gray) demonstrated GLA levels and seed yields adequate for commercial production. Based on these results, O. elata subsp. hirsutissima and O. jamesii demonstrated sufficiently high GLA levels, oil content, and seed yields to be considered for commercial production.