Search Results

You are looking at 91 - 100 of 454 items for :

  • Refine by Access: All x
Clear All
Free access

Krista C. Shellie, Robert L. Mangan, and Sam J. Ingle

The objective of this research was to investigate whether a controlled atmosphere established inside a high temperature forced air chamber could enhance the mortality of the most heat-resistant life stage of Mexican fruit fly larvae (Anastrepha ludens Loew) and thereby reduce the amount of time grapefruit (Citrus paradisi Macf.) harvested from Mexican fruit fly-infested regions must be exposed to high-temperature forced air to achieve quarantine security. The mortality of third instar larvae treated on diet was significantly higher after exposure to 1% oxygen or 1% oxygen enriched with 20% carbon dioxide than it was in either air or air enriched with 20% oxygen. Reducing the amount of oxygen in air from 21% to 1% during forced air heating at 46°C, reduced the exposure time required for 100% kill of larvae inside artificially infested grapefruit from 5 hours to 3.5 hours. Inconsistent fruit quality results warrant further study to optimize controlled atmosphere conditions during heating. Based upon relative levels of carbon dioxide inside the grapefruit during heating, fruit respiration during heating in 1% oxygen was lower than during heating in air. Results from this research suggest that reducing the amount of oxygen in a high temperature forced air chamber during heating can reduce the amount of time fruit must be exposed to heat for quarantine security against Mexican fruit fly.

Free access

Thomas C. Koch* and Irwin L. Goldman

Carotenoids (provitamin A) and tocopherols (vitamin E) are powerful antioxidants in plants and in the human diet. Carrot (Daucus carota) has been selected for increased levels of carotenoids, contributing to its orange color and reported health benefits. Selection for increased tocopherol has shown success in seed oils, but little progress has been made in the edible portions of most vegetable crops. HPLC measurement following a simultaneous heptane extraction of both compounds has shown a significant (P ≤ 0.001) positive correlation of α-tocopherol with α-carotene (r = 0.65) and β-carotene (r = 0.52). To increase both the tocopherols and carotenoids in plants, 3 populations have been established from select open-pollinated varieties grown in 2002. These populations consist of half-sib families with these differing selection schemes: based strictly on increased α-tocopherol levels; an index to increase α-carotene, β-carotene and α-tocopherol; and a random population in which no selection is occurring. After one cycle of selection, populations were grown on muck soil during the summer of 2003. Compared with the random population, an increase of 24.68% in α-tocopherol concentration was recorded for the population selected strictly on α-tocopherol while increases of 8.47% in α-tocopherol, 9.31% in α-carotene and 7.31% in β-carotene were recorded for the population with index selection. The continuation of these carrot populations shows promise to produce carrot germplasm with improved human nutritive value.

Free access

Murshidul Hoque*, Husein Ajwa, and Beiquan Mou

Lettuce (Lactuca sativa L.) is an essential salad crop in the American diet. Nitrogen (N), phosphorus (P), and potassium (K) are required for successful lettuce production and can influence lettuce quality. The objective of the study was to evaluate changes in nutritional composition of romaine (`Green Tower') and iceberg (`Sharp Shooter') lettuce in responses to N, P and K fertilization during fall production in Salinas, Calif. Sixteen treatment combinations of fertilizer were selected to provide a range of treatments. N was applied at 0, 112, 225, and 338 kg·ha-1 as ammonium nitrate; P was applied at 0, 112, and 225 kg/ha as super phosphate; and K was applied at 0 and 112 kg·ha-1 as muriate of potash. Nutritional content of fresh tissue of two types of lettuce was analyzed using high performance liquid chromatography (HPLC). Among the parameters analyzed were lutein, beta-carotene, chlorophyll a, and chlorophyll b. Yield was increased with increasing N fertilizer level, but was not affected by P or K application rates. The best post harvest quality, however, was at moderate P application rate. Increasing the N and P rates gradually increased glucose content in lettuce but decreased the shelf life. Significant differences between the two types of lettuce were found in chlorophyll, lutein and beta-carotene content. No significant correlations were found between soil fertilizer application levels and nutritional content of lettuce. However, the ratio of chlorophyll a and b were greater with the increase of fertilizer rate. Nutritional composition including vitamin C will be presented.

Free access

Carlos G. Vaz, Domingos de Oliveira, and Orlando S. Ohashi

Cowpea, Vigna unguiculata (L.) Walp., is a very important legume in the diet of the population of the Amazon. Although it is autogamous, this species has a cross-pollination rate of ≈10%. Over several years, the mean productivity of cowpea has declined. We suggest that this is linked to a decrease in or an absence of pollinating insects in the fields. The objective of this study is to ascertain the pollinator contribution to cowpea production, as well as to determine the pollination type of the `BR3-Tracuateua' cultivar. In an experimental design, four treatments were compared: no pollination, with flowers in cages to prevent insect visits; open-pollination, with flowers exposed to all visiting insects; self-pollination, with flowers pollinated with their own pollen; and cross-pollination, with emasculated flowers being pollinated manually with pollen from another plant. We observed higher fruit set in the presence of pollinators (83%) than in their absence (77%, caged flowers). However, cross-pollination reduced both the number of seeds per pod and fruit set relative to self-pollination. This result suggests that pollinators have a complementary role in the yield of cowpea, by creating a mixed pollination system where self-pollination dominates.

Free access

Amy F. Fulcher, Thomas G. Ranney, James D. Burton, James F. Walgenbach, and David A. Danehower

Japanese beetles (JB), Popillia japonica Newman, are destructive, highly polyphagous herbivores that show a general preference for Rosaceous plants. Choice and nochoice feeding assays were conducted to determine the level of resistance among 10 taxa of Malus spp. Mill. Under no-choice conditions, M. baccata (L.) Borkh. `Jackii', M. × `Hargozam' Harvest Gold and M. transitoria (Balatin) Schneider `Schmitcutleaf' Golden Raindrops were highly resistant, with <2 cm2 leaf area consumed in 24 hours. M. × `Radiant' was highly susceptible, with 7.6 cm2 consumed, and the remaining six cultivars were intermediate. Under choice conditions, eight taxa were resistant with <10% defoliation, M. × `Red Splendor' was intermediate with 26%, and M. × `Radiant' was susceptible with 73% defoliation. Feeding responses to eight individual phenolics were tested in artificial diets over a range from 0 to 100 mm. Phloridzin, phloretin, naringenin, and catechin were all feeding deterrents, whereas quercetin and rutin were feeding stimulants. Chlorogenic acid stimulated feeding at low concentrations and deterred feeding at higher concentrations (i.e., a peak response). Kaempferol had no effect. Analysis of endogenous foliar phenolics showed considerable variation in concentrations among taxa. Stepwise multiple regression analysis identified phloridzin as the only endogenous phenolic that was significantly related to resistance under both choice and no-choice feeding conditions.

Free access

Ji Tian, Ke-ting Li, Shi-ya Zhang, Jie Zhang, Ting-ting Song, Yong-jun Zhu, and Yun-cong Yao

Anthocyanins are protective pigments that accumulate in plant organs such as fruits and leaves, and are nutritionally valuable components of the human diet. The MYB10 transcription factor (TF) plays an important role in regulating anthocyanin biosynthesis in Malus crabapple leaves. However, little is known about how the promoter regulates McMYB10 expression and influences the substantial variation in leaf anthocyanin accumulation and coloration that is observed in different crabapple cultivars. In this study, we analyzed leaf coloration, anthocyanin levels, and the expression levels of McMYB10 in the leaves of 15 crabapple cultivars with three leaf colors at various development stages, and showed that the expression of McMYB10 correlates positively with anthocyanin accumulation. We also examined the relationship between the number of R6 and R1 elements in the McMYB10 promoters of the different cultivars and the pigmentation of the new buds of spring-red cultivars, as well as the methylation level of the McMYB10 promoters at different development stages in three representative crabapple cultivars. The ratio of R6/R1 minisatellites in the promoters correlated with the color and anthocyanin accumulation in new crabapple buds, and we concluded that the differences in promoter structure and methylation level of the McMYB10 promoters coordinately affect the leaf color of crabapple cultivars.

Free access

M. Wang and I.L. Goldman

The importance of folic acid in the human diet has been recognized in recent years by major increases in government recommended allowances. Red beet (Beta vulgaris L.) is an important vegetable source of folic acid, however little is known about the extent of variation for native folic acid content in red beet germplasm. A total of 18 red beet entries, including 11 hybrids (F1) and seven open-pollinated cultivars (OP), were evaluated for free folic acid content (FFAC) in replicated field experiments during 1993 and 1994. Significant differences among entries were detected in all studies. FFAC ranged from 3.3 to 15.2 μg·g-1 on a dry mass basis. A significant entry × year interaction was detected. Changes in rank of entries between years were minimal among F1 hybrids, while the changes in rank among OP cultivars were large. These data demonstrate significant variability among cultivated red beet germplasm sources for FFAC. Entries with high FFAC may be useful for increasing levels of this vitamin in red beet.

Open access

Rocheteau Dareus, Antonio Carlos Mota Porto, Mesfin Bogale, Peter DiGennaro, Carlene A. Chase, and Esteban Fernando Rios

Cowpea [Vigna unguiculata (L.) Walp] is a multipurpose crop that provides nutrients for human and livestock diets, as well as regulates and supports ecosystem services. In developing countries, cowpea is exploited as a dual-purpose crop for its grain and fodder; it is cultivated primarily for grain and as a cover crop in industrialized countries. However, root-knot nematodes (RKNs) (Meloidogyne spp.) represent a threat to cowpea production worldwide. Thus, we screened the University of California, Riverside (UC-Riverside), cowpea mini-core collection for resistance to Meloidogyne incognita Kofoid and White (Chitwood) and M. enterolobii Yang and Eisenback to verify the potential of this collection to be used for improving RKN resistance in cowpeas. Both screenings showed significant genotypic variation and medium/high broad-sense heritability (H 2) estimates for most traits, and several traits were also strongly correlated. For the M. incognita screening, 86.1% of accessions showed some level of resistance based on gall score (≤3), and 77.7% based on reproduction index (RI) (25 ≤ RI ≤ 50), whereas only 10.4% and 29.8% of accessions were resistant to M. enterolobii based on gall score (≤3) and RI (25 ≤ RI ≤ 50), respectively. These results demonstrate the greater virulence of M. enterolobii than M. incognita in cowpea, and that geographic origin of germplasm was not linked to sources of resistance. Among cultivars, only US-1136 showed resistance against both nematode species, whereas 12 wild/landrace germplasms exhibited resistance to M. incognita and M. enterolobii, and can be exploited for breeding resistant cowpeas.

Free access

Kirk D. Larson

Replant soil fumigation with mixtures of methyl bromide (MeBr) and chloropicrin (trichloronitromethane) is a standard practice for pest and disease control in fruit crop nurseries in California. The proposed phase-out of MeBr by the year 2001 requires that alternative soil sterilants be studied for nursery use. Therefore, on 5 April, 1993, three preplant soil treatments were applied to new strawberry ground: 1) MeBr/chloropicrin (67:33) at 392 kg/ha: 2) chloropicrin, a possible MeBr substitute. at 140 kg/ha: and 3) nonfumigation. The experimental design was a RCB: there were two plots (each 10′ × 15′) for each of two cultivars (`Chandler' and `Selva') for the 3 soil treatments in each of 3 blocks. Mother plants were planted 26 April, and plots were machine-harvested in October, 1993. All plants from each plot were uniformly graded, after which mean stolon yield per mother plant, mean crown diameters, and crown and root dry wts were determined. Cultivar effects and cultivar × treatment interactions were not observed, so data for the two cultivars were pooled. Stolon production per mother plant was greatest for trt 1 (18.56 stolons), intermediate for trt 2 (15.75 stolons), and least form 3 (7.89 stolons). For trt 3, crown dieters. and crown and root dry wts were reduced relative to those of trts 1 or 2. Stolons from all trts were planted in a fruit production field on 13 October, 1993. After two months, canopy diameters were greatest for plants from trt 1 (27.1 cm), intermediate for plants from trt 2 (26.2 cm) and least for plants from trt 3 (24.9 cm). The results indicate that, compared to standard soil fumigation with MeBr/chloropicrin. small, but significant, reductions in runner production and plant vigor can be expected following nursery soil fumigation with intermediate rates of chloropicrin.

Free access

Usha Rani Palaniswamy, Richard McAvoy, and Bernard Bible

Omega-3 fatty acids (O3FA) are essential for normal human growth, development, and disease prevention. Purslane (Portulaca oleraceae L.) is an excellent source of the O3FA α-linolenic acid (LNA)—with higher concentrations than any green leafy-vegetable examined to date—and is being considered for cultivation (by USDA-ARS) in an effort to improve the balance of essential fatty acids in the western diet. Twenty-fi ve-day-old seedlings of both a green-leafed and a golden-leafed type of purslane were transplanted into a closed hydroponic system. Nitrogen, at 200 ppm, was provided as NO3 and NH4 forms to yield NO3: NH4 ratios of 1:0, 0.25:0.75, 0.5:0.5, and 0.75:0.25. Treatments were arranged in a randomized complete-block design with five replications. The experiment was repeated. Young, fully expanded leaves were harvested 18 days after treatment initiation, frozen (–60°C), and then analyzed for fatty acids using gas chromatography. Although the two types of purslane did not differ in LNA concentration, the green-leafed purslane produced greater total dry mass than the golden-type. On a leaf dry mass basis, plants grown with a NO3:NH4 ratio of 0.5:0.5 produced 241% and 53% greater LNA than plants grown with NO3:NH4 ratios of 1:0 and 0.75:0.25, respectively. Plants grown with NO3:NH4 ratios of 1:0 and 0.25:0.75 produced similar leaf LNA concentrations. Total dry mass was not affected by the nitrogen treatments.