Search Results

You are looking at 91 - 100 of 459 items for :

  • Refine by Access: All x
Clear All
Free access

Tracy A. Ohler and Cary A. Mitchell

The vigorous growth habit and tolerances to heat, water, and acid stresses suggest cowpea as a candidate species for Controlled Ecological Life-Support Systems (CELSS). The low fat, high protein, moderate carbohydrate content of the edible leaves and seeds complement cereal grains in the vegetarian diets planned for CELSS. Cowpea canopy densities of 3.6, 7.2, 10.7, and 14.3 plants·m-2 were grown under CO2 levels of 400 or 1200 μl·l-1. Plants were grown in a deep-batch recirculating hydroponic system. pH was maintained at 5.5 by a pH controller with an in-line electrode. The nutrient solution was replaced as needed and sampled weekly for analysis by inductively coupled plasmaatomic emission spectrometry. Fluorescent lights provided 674±147 μmol·m-2s-1 PAR for an 8-hour photoperiod. Day/night temperature was maintained at 27/25°C. CO2 draw-down within the growth chamber was measured to calculate net photosynthesis. Power consumption was metered and canopy quantum efficiency was calculated. Crop yield rate (g·m-2·d-1). harvest index (% edible biomass), and yield efficiency (edible g·m-2·d-1·(nonedible g)-1) were determined to evaluate the productivity of cowpea for a CELSS. This study was supported by NASA Grant NAGW-2329.

Free access

M. Wang and I.L. Goldman

The importance of folic acid in the human diet has been recognized in recent years by major increases in government recommended allowances. Red beet (Beta vulgaris L.) is an important vegetable source of folic acid, however little is known about the extent of variation for native folic acid content in red beet germplasm. A total of 18 red beet entries, including 11 hybrids (F1) and seven open-pollinated cultivars (OP), were evaluated for free folic acid content (FFAC) in replicated field experiments during 1993 and 1994. Significant differences among entries were detected in all studies. FFAC ranged from 3.3 to 15.2 μg·g-1 on a dry mass basis. A significant entry × year interaction was detected. Changes in rank of entries between years were minimal among F1 hybrids, while the changes in rank among OP cultivars were large. These data demonstrate significant variability among cultivated red beet germplasm sources for FFAC. Entries with high FFAC may be useful for increasing levels of this vitamin in red beet.

Free access

Winand K. Hock

One of the major misconceptions in contemporary society is the widespread belief that our food supply is unsafe. The public's perception of risk is quite different than scientific assessment of risk. While scientists see microbial contamination as the key issue (100 to 10,000X greater risk than from exposure to pesticide residues), consumers appear to be most concerned about the effects of synthetic pesticides and fertilizers in the food they buy. Consumers equate “synthetic” with harmful or bad and “natural” with safe or good, yet they ignore the fact that 99.9% of all pesticides humans are exposed to are naturally occurring. Americans eat approximately 1.5 g. of natural pesticides per person per day, or about 10,000 times more than synthetic pesticide residues. Although few plant toxins have been tested for carcinogenicity so far, of those tested about half are rodent carcinogens. Contrary to public perception, environmental pollution accounts for only 2% of all cancers. By contrast, smoking, diet and other personal lifestyle choices account for more than 75%.

Free access

Kyoung-Shim Cho, Hyun-Ju Kim, Jae-Ho Lee, Jung-Hoon Kang, and Young-Sang Lee

Fatty acid is known as a physiologically active compound, and its composition in rice may affect human health in countries where rice is the major diet. The fatty acid composition in brown rice of 120 Korean native cultivars was determined by one-step extraction/methylation method and GC. The average composition of 9 detectable fatty acids in tested rice cultivars were as followings: myristic acid; 0.6%, palmitic acid; 21.2%, stearic acid; 1.8%, oleic acid; 36.5%, linoleic acid; 36.3%, linolenic acid; 1.7%, arachidic acid; 0.5%, behenic acid; 0.4%, and lignoceric acid; 0.9%. Major fatty acids were palmitic, oleic and linoleic acid, which composed around 94%. The rice cultivar with the highest linolenic acid was cv. Jonajo (2.1%), and cvs. Pochoenjangmebye and Sandudo showed the highest composition of palmitic (23.4%) and oleic acid (44.8%), respectively. Cultivar Pochuenjangmebye exhitibed the highest composition of saturated fatty acid (28.1%), while cvs. Sandudo and Modo showed the highest mono-unsaturated (44.8%) and poly-unsaturated (42.4%) fatty acid composition, respectively. The oleic acid showed negative correlation with palmitic and linoleic acid, while positive correlation between behenic and lignoceric acids was observed.

Free access

Amy F. Fulcher, Thomas G. Ranney, James D. Burton, James F. Walgenbach, and David A. Danehower

Japanese beetles (JB), Popillia japonica Newman, are destructive, highly polyphagous herbivores that show a general preference for Rosaceous plants. Choice and nochoice feeding assays were conducted to determine the level of resistance among 10 taxa of Malus spp. Mill. Under no-choice conditions, M. baccata (L.) Borkh. `Jackii', M. × `Hargozam' Harvest Gold and M. transitoria (Balatin) Schneider `Schmitcutleaf' Golden Raindrops were highly resistant, with <2 cm2 leaf area consumed in 24 hours. M. × `Radiant' was highly susceptible, with 7.6 cm2 consumed, and the remaining six cultivars were intermediate. Under choice conditions, eight taxa were resistant with <10% defoliation, M. × `Red Splendor' was intermediate with 26%, and M. × `Radiant' was susceptible with 73% defoliation. Feeding responses to eight individual phenolics were tested in artificial diets over a range from 0 to 100 mm. Phloridzin, phloretin, naringenin, and catechin were all feeding deterrents, whereas quercetin and rutin were feeding stimulants. Chlorogenic acid stimulated feeding at low concentrations and deterred feeding at higher concentrations (i.e., a peak response). Kaempferol had no effect. Analysis of endogenous foliar phenolics showed considerable variation in concentrations among taxa. Stepwise multiple regression analysis identified phloridzin as the only endogenous phenolic that was significantly related to resistance under both choice and no-choice feeding conditions.

Free access

Ji Tian, Ke-ting Li, Shi-ya Zhang, Jie Zhang, Ting-ting Song, Yong-jun Zhu, and Yun-cong Yao

Anthocyanins are protective pigments that accumulate in plant organs such as fruits and leaves, and are nutritionally valuable components of the human diet. The MYB10 transcription factor (TF) plays an important role in regulating anthocyanin biosynthesis in Malus crabapple leaves. However, little is known about how the promoter regulates McMYB10 expression and influences the substantial variation in leaf anthocyanin accumulation and coloration that is observed in different crabapple cultivars. In this study, we analyzed leaf coloration, anthocyanin levels, and the expression levels of McMYB10 in the leaves of 15 crabapple cultivars with three leaf colors at various development stages, and showed that the expression of McMYB10 correlates positively with anthocyanin accumulation. We also examined the relationship between the number of R6 and R1 elements in the McMYB10 promoters of the different cultivars and the pigmentation of the new buds of spring-red cultivars, as well as the methylation level of the McMYB10 promoters at different development stages in three representative crabapple cultivars. The ratio of R6/R1 minisatellites in the promoters correlated with the color and anthocyanin accumulation in new crabapple buds, and we concluded that the differences in promoter structure and methylation level of the McMYB10 promoters coordinately affect the leaf color of crabapple cultivars.

Open access

Rocheteau Dareus, Antonio Carlos Mota Porto, Mesfin Bogale, Peter DiGennaro, Carlene A. Chase, and Esteban Fernando Rios

Cowpea [Vigna unguiculata (L.) Walp] is a multipurpose crop that provides nutrients for human and livestock diets, as well as regulates and supports ecosystem services. In developing countries, cowpea is exploited as a dual-purpose crop for its grain and fodder; it is cultivated primarily for grain and as a cover crop in industrialized countries. However, root-knot nematodes (RKNs) (Meloidogyne spp.) represent a threat to cowpea production worldwide. Thus, we screened the University of California, Riverside (UC-Riverside), cowpea mini-core collection for resistance to Meloidogyne incognita Kofoid and White (Chitwood) and M. enterolobii Yang and Eisenback to verify the potential of this collection to be used for improving RKN resistance in cowpeas. Both screenings showed significant genotypic variation and medium/high broad-sense heritability (H 2) estimates for most traits, and several traits were also strongly correlated. For the M. incognita screening, 86.1% of accessions showed some level of resistance based on gall score (≤3), and 77.7% based on reproduction index (RI) (25 ≤ RI ≤ 50), whereas only 10.4% and 29.8% of accessions were resistant to M. enterolobii based on gall score (≤3) and RI (25 ≤ RI ≤ 50), respectively. These results demonstrate the greater virulence of M. enterolobii than M. incognita in cowpea, and that geographic origin of germplasm was not linked to sources of resistance. Among cultivars, only US-1136 showed resistance against both nematode species, whereas 12 wild/landrace germplasms exhibited resistance to M. incognita and M. enterolobii, and can be exploited for breeding resistant cowpeas.

Free access

Annette Wszelaki, Karla Deza-Duran, and Carol Harper

Pigeon pea is an important food crop for the Puerto Rican diet, as well as the economy. Pigeon pea ranks fourth in production among edible legumes in production worldwide. It can be consumed dried or as a vegetable (fresh, frozen, or canned). Canned, frozen, and dried peas are commonly used when fresh peas are no longer available. Due to the preferred flavor of fresh pigeon pea, it commands a higher market premium, selling for more than twice the price of the dried product. Although there is a great demand for this vegetable in Puerto Rico, virtually no research has been done on fresh pigeon pea postharvest physiology and its overall keeping quality. Baseline data on pigeon pea physiology, including respiration and ethylene production rates, soluble solids, titratable acidity, color reflectance, chlorophyll content, and responses to ethylene are presented here in order to establish the optimum storage temperature. Using this information, fresh pigeon pea consumption could increase locally, and exporting opportunities for shipping pigeon pea to alternative markets could be expanded.

Free access

X.E. Yang, X.X. Long, W.Z. Ni, and E.W. Stover

Vegetables play an important role in the human diet, and production in suburban areas has increased as populations have become more urbanized. However, heavy metal pollution of soils has enhanced in such areas, and metal accumulation in vegetables may pose a human health risk when consumed. Zinc is an essential micronutrient for plants and humans, but it is toxic to plants and humans at high levels. Although a maximum Zn tolerance for human health has been established for edible parts of vegetables (20 mg/kg DW), little information is available for predicting vegetable Zn concentration based on soil and water Zn levels. The objectives of this study were to determine the critical Zn concentrations in nutrition solution and soil to reach maximum Zn tolerance concentrations in Chinese cabbage, bok choy, and celery. Five Zn levels were used for both solution and soil culture experiments, with three replicates of each. Shoot growth was significantly inhibited at Zn concentrations above 50 mg/L in nutrition solution and above 180 mg/kg in soil. The sensitivity of crops to zinc toxicity, in term of shoot and root growth, decreased in the order: celery > Chinese cabbage > bok choy. Zinc accumulation in shoots and edible parts varied with Zn supply levels and type of vegetables. A negative correlation was noted between Zn accumulation and dry matter yields, with r-squared values of 0.980** for nutrient solution and 0.960* for soil culture. Zinc concentrations in shoots or edible vegetable parts were below 20 mg/kg (human health threshold) when they were grown at DTPA extractable Zn in the soil less than 75, 100, and 175 mg/kg for bok choy, celery, and Chinese cabbage, respectively.

Free access

Everardo Zamora, Santiago Ayala, Cosme Guerrero, Damian Martínez, and Francisco Rivas

The pod cactus (Opuntia sp.), a tender stem, has been consumed by Mexican people for centuries either as a fresh or boiled vegetable. Traditionally, Southern Mexico people consume this tender pod cactus in several traditional Mexican dishes. During recent years, an increase in nopalitos consumption by Sonoran people has been observed. People interested in a disciplined diet or people troubled with high cholesterol desire this peculiar vegetable. In Hermosillo, Mexico, people buy nopalitos in small plastic bags packages a pound of small cutting of tender pods from local supermarkets and mobile sellers. Usually, a nopalitos bag pound price is a range of $1.00 to $1.2 U.S. dollars in Hermosillo. Nopalitos production in Sonora, Mexico, is a seasonal. Nopalitos harvesting starts in early April and runs through late October. Because low temperatures start in late October, and continue during the winter season, there is no nopalitos production in Sonora. Hense, Sonoran producers are considerig building high tunnels, to provide more temperature control and to produce nopalitos during the winter. Most growers are low-income people that produce nopalitos in home gardens. This activity allows low-income growers to have nopalitos during most of the year, except during the winter. The current growing area production of 240 acres (170 ha) of tender pod cactus was recorded during 2005 in Sonora, of which a half is cultivated in home gardens. A potential yield production of nopalitos in Sonora is about of 40 tons per acre of tender pod cactus. In comparison to other crops, nopalitos production is a good alternative for small growers.