Search Results

You are looking at 91 - 100 of 1,559 items for :

  • Refine by Access: All x
Clear All
Free access

Amy N. Wright, Alex X. Niemiera, J. Roger Harris, and Robert D. Wright

The objective of this study was to determine the effects of lime and micronutrient amendments on growth of seedlings of nine container-grown landscape tree species in two pine bark substrates with different pHs. Acer palmatum Thunb. (Japanese maple), Acer saccharum Marsh. (sugar maple), Cercis canadensis L. (redbud), Cornus florida L. (flowering dogwood), Cornus kousa Hance. (kousa dogwood), Koelreuteria paniculata Laxm. (golden-rain tree), Magnolia ×soulangiana Soul.-Bod. `Lennei' (magnolia), Nyssa sylvatica Marsh. (blackgum), and Quercus palustris Müenchh. (pin oak) were grown from seed in two pine bark substrates with different pHs (pH 4.7 and 5.1) (Expt. 1). Preplant amendment treatments for each of two pine (Pinus taeda L.) bark sources were: with and without dolomitic limestone (3.6 kg·m–3) and with and without micronutrients (0.9 kg·m–3), and with and without micronutrients (0.9 kg·m–3), supplied as Micromax. Seedlings were harvested 12 and 19 weeks after seeds were planted, and shoot dry weight and tree height were determined. The same experiment was repeated using two of the nine species from Expt. 1 and pine bark substrates at pH 5.1 and 5.8 (Expt. 2). Seedling shoot dry weight and height were measured 11 weeks after planting. For both experiments, pine bark solutions were extracted using the pour-through method and analyzed for Ca, Mg, Fe, Mn, Cu, and Zn. Growth of all species in both experiments was greater in micronutrient-amended than in lime-amended bark. In general, adding micronutrients increased nutrient concentrations in the pine bark solution, while adding lime decreased them. Effect of bark type on growth in Expt. 1 was variable; however, in Expt. 2, growth was greater in the low pH bark than in the high pH bark. In general, nutrient concentrations in bark solutions were higher in low pH bark than in high pH bark for both experiments. Under the pH conditions of this experiment, micronutrient additions stimulated growth whereas a lime amendment did not.

Free access

Michael Wisniewski and Les Fuchigami

During autumnal leaf senescence, leaf nitrogen is translocated to bark and root tissues for storage. By definition, proteins that accumulate in large amounts in winter and are absent in summer are called storage proteins. These storage proteins are believed to play an important role in spring growth and helping trees to tolerate and/or recover from both abiotic and biotic stress. Little knowledge exists regarding storage proteins in apple, their physiological function, or how management practices impact them. Our objectives in this research was to characterize seasonally regulated proteins in apple, develop knowledge about their physiological function, and determine how they are affected by management practices. Results of the first-year studies have identified four major proteins that exhibit a seasonal pattern of accumulation in bark tissues of apple. One of these is a pathogenesis-related protein, meaning that it plays a role in disease resistance. Another of these proteins is a stress-related protein important in the use of carbohydrates under stress conditions. A third protein is a vegetative storage protein serving as a reserve for nitrogen. The last protein has not been completely identified. Greatest seasonal fluctuation of these proteins occurred in current season and 1-year-old bark tissues. Experimental studies that achieved varying levels of nitrogen in shoot tissues of young Fuji apple trees were examined for the effect on the accumulation of these proteins. Results indicated that despite a significant increase in total nitrogen, increases in the accumulation of these proteins were only slight. Instead, it appears that most of the nitrogen was present as free amino acids rather than stable proteins. These data indicate that more knowledge is required to determine the benefits and feasibility of elevating the levels of specific proteins in dormant apple trees or trying to manipulate the type of amino acids that accumulate.

Free access

Marilyn B. Odneal and Martin L. Kaps

The recommendation for planting highbush blueberry (Vaccinium corymbosum L.) in Missouri includes the incorporation of sphagnum peat in the planting hole. This experiment compared the use of fresh and aged pine bark to sphagnum peat as soil amendments at planting. One-year-old highbush blueberry `Blueray' plants were planted in 1983 at Mountain Grove, Mo. Plant height, spread, and number of new canes were recorded from 1983 through 1987. Yield and berry size were recorded from 1985 through 1988. There were no significant differences in these measurements among soil amendment treatments (P = 0.05).

Free access

Monte L. Nesbitt, Larry Stein, and William D. Goff

Pecan is a difficult species to propagate by grafting. The whip graft, bark graft, and four-flap graft, the most often-used techniques for pecan grafting, require dormant scions, collected and stored for 60 to 120 days prior to spring-season grafting. Poor graft success is often blamed on handling and storage environment of the scionwood. Moisture content of packing material, waxing of cut ends, and use of polyethylene bags was evaluated in a controlled experiment in 1998 and 1999. Scions were cut in early February each year, and stored for 60 to 70 days in a household refrigerator under different treatment regimes. Scion viability was tested by bark grafting mature pecan trees in Fairhope, Ala., and Uvalde, Texas. In 1998, graft success rate was equally good among scions stored in polyethylene bags with different amounts of added moisture, whether cut ends were waxed or not. Moisture loss of the scions during storage was affected each year by the amount of water added to packing material and by waxing the cut-ends, but the differences did not impact graft success. An interaction of not waxing the cut ends and very wet packing material reduced graft success at Fairhope, Ala., but not Uvalde, Texas, in 1999.

Free access

Richard J. McAvoy and Paige Kishbaugh-Schmidt

Easter lilies, Lilium longiflorum Thumb. cv Nellie White, were grown in a commercial pine bark-based medium (25% by vol.), amended with 0.5 g Acrylamide Acrylate Gel (AAG) per 1.6 liter pot. Lilies were grown in media drenched with ancymidol, at 0, 0.25, 0.375 or 0.5mg a.i.pot-1 following shoot emergence, or grown in media containing ancymidol impregnated AAG at 0, 0.25, 0.375 or 0.5mg a.i.pot-1. AAG applied ancymidol treatments resulted in a significant linear decrease in both lily stem and internode length as the rate of ancymidol increased. Drench applied ancymidol had no affect on stem or internode length. Stem and internode lengths of drench treated lilies were not significantly shorter than lilies not exposed to ancymidol. Bud length, leaf and bud number, and days to anthesis were not affected (P≤0.05) by any treatment. Ancymidol activity in the top, middle and bottom strata of medium filled containers, and in the leachate from these containers, was measured using a lettuce hypocotyl length bioassay. Ancymidol activity was uniformly distributed throughout the bark medium when applied in AAG. With this treatment, 10-15% of the ancymidol activity was detected in the leachate. When ancymidol was applied as a drench, over 95% of the activity was detected in the top two strata, with 70% in the upper most stratum and the rest in the leachate.

Free access

Michael Wisniewski, Tim Artlip, Carole Bassett, and Ann Callahan

Cold acclimation in temperate, woody plants involves distinct changes in gene activity and protein expression. We have been identifying proteins and genes that are associated with seasonal changes in cold hardiness. Seasonal changes in a 60-kDa dehydrin and its corresponding transcript have been identified, as well as seasonal changes in 16- and 19-kDa storage proteins. Further screening of a cDNA library, constructed from cold-acclimated bark tissues collected in December, identified a 700–800-bp clone that was seasonally expressed in Northern blots. The transcript began to accumulate in October, reached a peak in November–December, and then began to decline. By April, the transcript was no longer present in bark tissues. The transcript size indicates that this gene my be related to either the 16- or 19-kDa storage proteins previously identified; however, an amino acid sequence of the protein for comparison has not yet been obtained. Interestingly, the transcript is also expressed during the early stages of peach fruit development. A similar pattern between seasonal expression and fruit development has been observed for a peach dehydrin transcript. Analysis of a partial sequence of the clone has indicated a similarity to genes encoding proteinase inhibitors and thionins (a class of biocidal proteins). More definitive characterization of the gene and identification of its corresponding protein are in progress.

Free access

Carleton B. Wood, Timothy J. Smalley, Mark Rieger, and David E. Radcliffe

Container-grown Viburnum plicatum Thunb. var. tomentosum (Thunb.) Miq. `Mariesii' were planted in unamended planting holes, tilled plots, and tilled plots amended with aged pine bark. A 36-day drought was initiated 108 days after planting. Amending induced N deficiencies, reduced shoot growth, and increased root growth. Plants harvested from tilled and planting-hole plots at drought initiation had 63% and 68% more dry weight, respectively, than plants from amended plots. Between 8 and 19 days after drought (DAD) initiation, plants from tilled plots maintained higher relative leaf water content (RLWC) than plants from planting holes. Plants in amended plots maintained higher RLWC than both other treatments between 7 and 33 DAD. Amended and tilled treatments had higher relative leaf expansion rates (RLERs) than the planting-hole treatment 8, 11, 13, and 15 DAD. As the drought lengthened, plants in amended plots maintained higher RLERs than plants in tilled plots. While plants in pine bark-amended plots were more drought tolerant than those in tilled plots, it is unclear if increased drought tolerance was caused by the improved rooting environment or N deficiency.

Open access

T. H. Yeage, R. D. Wright, and S. J. Donohue

Abstract

The pour-through (PT) method of nutrient extraction, which involves pouring water on the container media surface and collecting the extract (leachate), was compared to the saturated soil extract (SSE) method for a 100% pine bark medium at container capacity (102% gravimetric moisture). The SSE and PT correlation coefficients, respectively, were 0.99 and 0.94 for N, 0.99 and 0.97 for P, 0.99 and 0.93 for K, and 0.99 and 0.98 for pH. As container media moisture levels increased from 50 to 102%, the PT and SSE soluble salt levels increased 1.5 and 1.6 times, respectively, while nitrate levels increased 1.7 and 1.6 times, respectively. The volume of water applied for the PT was varied from 40 to 100 ml and did not result in extraction of different levels of N, P, K, Ca, or Mg. These data indicate the PT is an alternative to the SSE for nutrient extraction from a pine bark medium.

Free access

Ramakrishna Nalagorla, Catherine Sabota, and Caula Beyl

Shiitake mushrooms contain lentinan, a polysaccharide that has numerous medicinal benefits. The objective of this research was to determine the impact of various rates of chipped and sawmill bark added to the substrate on lentinan found in shiitake mushrooms. Crude polysaccharide extract (CPE) and lentinan (LTN) content was significantly different among shiitake mushrooms grown on various artificial substrates containing different percentages of sawdust and chipped bark. The addition of chipped bark content from 0% to 50% increased the CPE content, but an increase in chipped bark content from 50% to 100% decreased the CPE and LTN content. CPE content in mushrooms was greater when equal proportions of sawdust and bark were used. A 100% heartwood treatment had the least CPE content.

Open access

P. A. Domoto and A. H. Thompson

Abstract

A greenhouse solution culture experiment was conducted to study the interactions of Ca, K and Mn supply on the concentration of 7 elements in bark tissues of ‘Delicious’ apple (Malus domestica Borkh) trees as related to internal bark necrosis (IBN). Under a regime of low Ca and high Mn, IBN symptoms developed late in the second growing season on the scion barks but not on the rootstock bark. Both the degree of severity and the incidence of the disorder increased with increasing K levels. Low Ca and high Mn concentrations in the barks are apparently necessary for the development of IBN, and under these conditions K affects the degree of severity. It is suggested that the higher K concentrations enhanced Mn toxicity by lowering the threshold for Mn-induced IBN, while Ca responded as a detoxifying agent. Low concentrations of B and P may contribute to IBN development, while Mg and Fe were not related to symptom development.