Search Results

You are looking at 91 - 100 of 1,585 items for :

  • Refine by Access: All x
Clear All
Free access

Patrick J. Conner, Susan K. Brown, and Norman F. Weeden

Two half-sib populations (cross 1 = `Wijcik McIntosh' (WM) × NY 75441-67, and cross 2 = WM × NY 75441-58) were used to create maps for the parents and to find RAPD or isozyme markers for qualitative and quantitative traits. WM is a sport of `McIntosh' and is heterozygous for the dominant columnar (Co) gene for reduced branching. WM is of great interest in breeding because of the tremendous effect of the Co gene on many aspects of plant form. NY 75441-67 and NY 75441-58 are advanced selections with commercial fruit quality and resistance to scab (Vf resistance from M. floribunda). Traits examined included both tree (plant height, stem diameter, suckering, branching habit, leaf break, burr knot production) and fruit (size, shape, color, stem length, seed number) characters and fruit quality traits (pH, acid content, Brix). The conservation of RAPD markers in these closely related crosses will be examined and the usefulness of molecular markers to preselect for components of plant form and fruit quality will be discussed. Molecular markers will increase the efficiency of the apple breeding program by aiding the understanding and manipulation of complex genetic traits.

Free access

Roberto Hauagge and James N. Cummins

Apple seedlings have a shallow dormancy, as has been observed in many other species. The length of bud dormancy in high-chilling-requirement seedlings does not reflect their genetic constitution well if dormancy is induced before they are 200 days old. Seedling populations sprayed with paclobutrazol and/or ethephon displayed bud dormancy periods resembling those of older populations of similar genetic constitution. Terminal bud formation and dormancy could not be induced by continuously exposing apple seedlings to low temperature (8 ± 1C) and short photoperiod, even after extended periods. Stomate operation may not be completely functional under these conditions. Terminal bud formation was induced by holding apple seedlings above 20C. Additional exposure to low temperature (8 ± 1C) induced leaf fall. These findings suggest the existence of an active regulatory factor that induces terminal bud formation and dormancy and is either turned on or synthesized above 15 to 17C. Chemical names used: β- [(4-chlorophenyl)methyl]- α -(1,1-dimethylethyl)-1H-1,2,4-triazole-1-ethanol(paclobutrazol);(2-chloroethyl)phosphoric acid (ethephon).

Free access

Frank Cheng, Norman Weeden, and Susan Brown

The ability to pre-screen apple populations for fruit color at an early seedling stage would be advantageous. In progeny of the cross `Rome Beauty' × `White Angel' red/yellow color variation was found to be highly correlated with the genotype at Idh-2, an isozyme locus that was heterozygous in both parents. We postulate that the red/yellow color variation was produced by a single gene linked to I&-2 and also heterozygous in both parents. This population was also screened with over 400 primers to detect randomly amplified polymorphic (RAPD) markers for fruit color. DNA extraction procedures were developed for bark, and DNA was extracted from bark samples and leaves. Red and yellow fruited individuals were examined in bulk. Several markers have been found that are linked to red color. A high density map is being constructed in this region. These markers are being examined in other crosses segregating for fruit color. The application of these markers will be discussed in relation to the inheritance and manipulation of fruit color.

Free access

Michael J. Perry, Preston K. Andrews, and Robert G. Evans

`Fuji' apples grown in the high light intensity of arid eastern Wash. are prone to sunscald damage. Evaporative cooling with over-tree sprinklers has become a commercially acceptable method for reducing the incidence of sunscald damage. A computer-controlled, over-tree evaporative cooling system was installed in a 3-yr-old commercial `Fuji'/M.9 orchard near Walla Walla, Wash. Over-tree sprinklers (Nelson R10 Mini Rotators) applied 280 or 560 1·min-1·ha-1 (30 or 60 GPM/A) when core temperatures were ≥33C (91.4F). Fruit skin and core temperatures were monitored with thermocouples. Fruit growth was not different between treatments. Skin color was improved by cooling, but the incidence of sunscald was low in all treatments. Commercial pack-out was measured and culls were evaluated. Fruit quality was analyzed at harvest and after 14 weeks storage. Titratable acids and soluble solids were higher in the 560 1·min-1·ha-1 treatment at harvest.

Free access

Dorcas K. Isutsa, Ian A. Merwin, and Bill B. Brodie

Orchard replant disorder (ORD) is a widespread soilborne disease complex that causes stunting and poor establishment of replanted fruit trees. Chemical and cultural control of ORD provide effective, but short-term, control. More-sustainable strategies would involve ORD-resistant rootstocks not yet identified in apple. We tested `Bemali', G11, G13, G30, G65, G189, G210, and G707 clones from the apple rootstock breeding program at Geneva, N.Y., for their response to ORD in a composite soil collected from New York orchards with known replant problems. Clones were tested in the greenhouse in steam-pasteurized (PS), or naturally infested field soils (FS) with about 900 Pratylenchus penetrans and 150 Xiphinema americanum per pot. Plant dry mass, height, root necrosis, and nematode populations were determined after 60 days under optimal growing conditions. Stunting, reduced plant dry mass, and root necrosis were more severe in FS than in PS for most of the clones (P ≤ 5%), but G30 and G210 were substantially more tolerant to replant disorder than smaller ones, but this toleratnce might not be sustained in fields with greater or more prolonged nematode infestations. There is sufficient variation in apple rootstock resistance or tolerance to ORD to suggest that genetic resistance may be identified and developed for better management of orchard replant problems.

Free access

Chang-Hoo Lee, N. I. Hyung, and S. E. Kim

Experiments were conducted to investigate the factors influencing mesophyll protoplast isolation in `Fuji' apple. Half an hour pretreatment in 0.6M mannitol gave the highest protoplast yield.The enzyme solution containing 2% Cellulase Onozuka R-10 and 0.5% macrozyme R-10 with CPW 0.6M mannitol at pH 5.5 was most effective for protoplast isolation from leaf. Effective incubation time for the enzyme treatment was found to be 15-20 hrs at 25°C in the dark. Use of 1.0-2.0% PVP and 0.5mM MES was essential for higher yield and viability of protoplast. Supplementation of BA and IBA to the shoot culture media gave the higher yield of viable protoplast. From these protoplast, new cell walls were regenerated and 4 cell structures developed from one protoplast by cell division in K8P medium supplemented with 3A and NAA. Planting density higher than 10 protoplasts/ml was required for cell division from protoplast in liquid or 0.5% agarose culture.

Free access

Stan C. Hokanson, James R. McFerson, Philip L. Forsline, Warren F. Lamboy, James J. Luby, Aimak D. Djangaliev, and Herb S. Aldwinckle

Free access

Shiow Y. Wang and Miklos Faust

The ability of low and high temperatures and S-containing compounds to overcome endo- and paradormancy along with the possible mechanisms involved in these treatments for breaking `Anna' apple bud dormancy were studied. All three treatments induced budbreak in paradormant (July) and endodormant (October) buds. Cold, heat, and allyl disulfide increased ascorbic acid, the reduced form of glutathione (GSH), total glutathione, total nonprotein thiol (NPSH), and nonglutathione thiol (RSH), whereas dehydroascorbic acid and oxidized glutathione (GSSG) decreased. The treatments also increased the ratios of ascorbic acid: dehydroascorbate and GSH: GSSG and the activities of ascorbate free-radical reductase (AFR, EC 1.6.5.4), ascorbate peroxidase (EC 1.11.1.11), dehydroascorbate reductase (DHAR, EC 1.8.5.1), ascorbate oxidase (AAO, EC 1.10.3.3), and glutathione reductase (GR, EC 1.6.4.2) in the buds. These results indicate that budbreak induced by cold, heat, and allyl disulfide is associated with the removal of free radicals through activated peroxide-scavenging systems.

Free access

James F. Harbage, Dennis P. Stimart, and Ray F. Evert

Anatomical events of adventitious root formation in response to root induction medium, observing changes during induction and post-induction stages, were made with microcuttings of `Gala' apples. Shoot explants on root induction medium containing water, 1.5 μm IBA, 44 mm sucrose, or 1.5 μm IBA + 44 mm sucrose after 4 days of treatment averaged 0, 0.2, 2.2, and 11.9 meristemoids per microcutting, respectively. Meristemoids formed in response to sucrose were confined to leaf gaps and traces. Time-course analysis of root induction with 1.5 μm IBA + 44 mm sucrose over 4 days revealed that some phloem parenchyma cells became densely cytoplasmic, having nuclei with prominent nucleoli within 1 day; meristematic activity in the phloem was widespread by 2 days; continued division of phloem parenchyma cells advanced into the cortex by 3 days; and that identifiable root primordia were present by 4 days. Cell division of pith, vascular cambium, and cortex did not lead to primordia formation. Meristematic activity was confined to the basal 1 mm of microcuttings. Time-course analysis of post-induction treatment revealed differentiation of distinct cell layers at the distal end of primordia by 1 day; primordia with a conical shape and several cell layers at the distal end by 2 to 3 days; roots with organized tissue systems emerging from the stem by 4 days; and numerous emerged roots by 6 days. Root initiation was detectable within 24 hours and completed by day 4 of the root induction treatment and involved only phloem parenchyma cells. Chemical names used: 1 H -indole3-butryic acid (IBA).

Free access

James Luby, Philip Forsline, Herb Aldwinckle, Vincent Bus, and Martin Geibel