Search Results
Sorbitol plays a important role in the translocation of photosynthate in apple. Sorbitol-6-phosphate dehydrogenase (S6PDH, is the key enzyme regulating sorbitol biosynthesis. The cloning of functional gene like S6PDH provides the potential to elucidate the mechanism of production and translocation of sugar in the Rosaceae family and to manipulate endogenous sorbitol production in horticultural crops.
Poly(A)+RNA was prepared from apple seedlings and cDNA library constructed in an expression vector was screened by the loquat-S6PDH antibody prepared by Hirai (Natl. Res. Inst. Veg. Ornam. Plants & Tea, Japan). The cloned cDNA contained an open reading frame of 930 base pairs encoding a sequence of 310 amino acids. Identification of the cDNA was accomplished by expression of active enzyme in Escherichia coli harboring the cDNA and by the presence of a partial amino acid sequence identical to that found in the purified enzyme. Northern blot analysis showed the expression of S6PDH gene in apple seedlings.
A cDNA library was constructed from poly(A)+RNA extracted from pollinated fruit of `PMR-142' cucumber (Cucumis sativus L.). Subtraction hybridization was made between the cDNAs and poly(A)+RNA from unpollinated fruit to isolate cDNA clones that corresponded to the genes preferentially expressed in the pollinated fruit. We isolated three cDNAs, which were 756, 826, and 998 nucleotides long and designated Csf1, Csf2, and Csf3, respectively. When fruit growth was triggered by pollination, auxin treatment and natural parthenocarpy, Csf2 was always expressed. Time course of expression of the Csf2 gene was nearly parallel to that of the fruit growth. Nucleotide sequences of the Csf cDNAs were fully determined. Homology of the deduced amino acid sequence for Csf1 showed 75% identity with a pea extensin. Only 37%, 33%, and 26% homology was found between Csf2 and bell pepper CaSn-2, tobacco FB7-4, and opium poppy gMLP15, respectively. The Csf3 sequence showed 68% identity with the large subunit of 60S ribosomal protein L3 of Arabidopsis thaliana.
This report identifies S-RNases of sweet cherry (Prunus avium L.) and presents information about cDNA sequences encoding the S-RNases, which leads to the development of a molecular typing system for S-alleles in this fruit tree species. Stylar proteins of sweet cherry were surveyed by two dimensional polyaclylamide gel electrophoresis (2D-PAGE) to identify S-proteins associated with gametophytic self-incompatibility. Glycoprotein spots linked to S-alleles were found in a group of proteins which had Mr and pI similar to those of other rosaceous S-RNases. These glycoproteins were present at highest concentration in the upper segment of the mature style and shared immunological characteristics and N-terminal sequences with those of S-RNases of other plant species. cDNAs encoding these glycoproteins were cloned based on the N-terminal sequences. Genomic DNA and RNA blot analyses and deduced amino acid sequences indicated that the cDNAs encode S-RNases; thus the S-proteins identified by 2D-PAGE are S-RNases. Although S1 to S6 -alleles of sweet cherry cultivars could be distinguished from each other with the genomic DNA blot analysis, a much simpler method of PCR-based typing system was developed for the six S-alleles based on the DNA sequence data obtained from the cDNAs encoding S-RNases.