Search Results

You are looking at 71 - 80 of 83 items for

  • Author or Editor: William B. Miller x
  • Refine by Access: All x
Clear All Modify Search
Free access

Christopher B. Cerveny, William B. Miller, Thomas Björkman, and Neil S. Mattson

The published literature is inconsistent with recommendations for hydrating Ranunculus asiaticus (L.) dried tuberous roots, a common practice in commercial production systems for this ornamental geophyte. Imbibition rate increased with hydration temperature but to lower equilibrium moisture content than when hydrated at cooler temperatures. In the greenhouse, survival was predicted to be greatest when tubers were hydrated at 20 °C. Plant height, visual quality, and foliar dry weight followed a similar trend 4 weeks after planting. These results demonstrate that a hydration temperature between 15 and 25 °C is required to obtain good quality when growing R. asiaticus from its dried tuberous roots.

Full access

Anil P. Ranwala, Garry Legnani, Mary Reitmeier, Barbara B. Stewart, and William B. Miller

We evaluated preplant bulb dips in three commercial plant growth retardants [ancymidol (A-Rest), paclobutrazol (Bonzi), and uniconazole (Sumagic)] for height control in seven oriental hybrid lily (Lilium) cultivars (Aubade, Berlin, Casa Blanca, Muscadet, Sissi, Star Gazer, and Tom Pouce), and seven LA-hybrid lily [hybrids resulting from crosses between easter lily (Lilium longiflorum) and Asiatic hybrids] cultivars (Aladdin's Dazzle, Best Seller, Cebeco Dazzle, Royal Dream, Royal Parade, Royal Perfume, and Salmon Classic) grown in containers. A 1-min dip into a range of concentrations of each product was used to determine the optimum concentrations for height control. The results indicate that bulb dips, especially with uniconazole and paclobutrazol, can be a highly effective means of height control in hybrid lilies. Cultivars varied in their response to growth retardant treatments. In general, LA-hybrid lilies were much more responsive to the growth retardant treatments than oriental hybrids and required lower rates for comparable height control. Delays in flowering, increased bud abortion and leaf yellowing were observed only with high concentrations of uniconazole or paclobutrazol where the height reduction was also too excessive for a commercially acceptable crop.

Free access

Anil P. Rartwala, William B. Miller, P. Allen Hammer, and Terri Kirk

The possible factors contributing to leaf yellowing during the postharvest phase of Easter lilies (Lilium longiflorum Thunb.) were investigated. Higher levels of growth retardants, forcing under negative DIF conditions, cold storage (4.0°C) at the `puffy bud' stage and shipping stress were shown to increase leaf yellowing during postharvest holding. Concentrations of soluble carbohydrates and starch under inductive and non-inductive conditions were determined to investigate the correlation of it to leaf yellowing. Lilies grown under negative DIP had lower concentrations of leaf, stem and flower soluble carbohydrates and starch compared to plants grown under positive DIF. Investigation of diurnal fluctuations of leaf carbohydrates revealed low carbohydrate levels in negative DIP-forced plants at all times during the diurnal cycle. Supplemental light (50-60 μmo1 m-2s-1) during cold storage increased leaf carbohydrate levels. Higher levels of bud abortion and reduced flower longevity were also observed under conditions inductive of leaf yellowing.

Free access

William B. Miller*, Martijn Verlouw, Susan S. Liou, Holly O. Cirri, Karen Snover-Clift, and Chris Watkins

Ethylene evolution is a consequence of Fusarium infection of tulip bulbs, yet little is known about the bulb-pathogen interactions involved in the induction or time course of ethylene synthesis. The resulting ethylene can affect adjacent, non-infected bulbs, and results in a variety of disorders, most notably flower abortion. Earlier work indicates that cultivars vary in their sensitivity to ethylene, but there are few data on ethylene production by cultivar. In this experiment, we assessed Fusarium-induced ethylene production in 36 tulip cultivars. Bulbs were wounded, inoculated with a liquid Fusarium suspension (isolated from infected bulbs) and held at 25 °C. Control bulbs were wounded, but not inoculated. Ethylene production was monitored by headspace analysis and gas chromatography. Ethylene increased rapidly after a lag phase of at least 8 days, but there were large differences in ethylene production among cultivars. Of the cultivars tested, `Furand' evolved more than 340 μL/kg/fwt/hr (≈250 μL/L/bulb/day) on the 11th day after infection, a rate ≈440-fold greater than in non-inoculated bulbs. Inoculated cultivars producing ethylene at rates exceeding 50 μLL/kg/hr included `Mary Belle', `Libretto', `Nashville', `Yonina', `Friso', and `Prominence'. About 25% of the cultivars produced ethylene at rates >10 μL/kg/hr, and ≈40% of cultivars produced less than this rate on day 11. High-ethylene producing tulips could be stored separately from other cultivars, or be given increased ventilation during storage or transportation. Knowledge of cultivar variation might also be useful in breeding programs. Further questions concerning the specific tissue responsible for ethylene synthesis (bulb, fungus, or both?) also arise.

Free access

H. Brent Pemberton, Yin-Tung Wang, Garry V. McDonald, Anil P. Ranwala, and William B. Miller

Case-cooled bulbs of Lilium longiflorum `Nellie White' were forced to flowering. When the tepals on the first primary flower bud split, plants were placed at 2 °C in the dark for 0, 4, or 21 days. After storage, plants were placed in a postharvest evaluation room with constant 21 °C and 18 μmol·m-2·-1 cool-white fluorescent light. Lower leaves, upper leaves, and tepals of the first primary flower from a concurrent set of plants were harvested for carbohydrate analysis using HPLC. Storage time did not affect carbohydrate levels in the lower leaf or tepal samples, but sucrose and starch levels decreased while glucose and fructose levels increased in the upper leaf tissue with increasing storage time. These changes were correlated with a decrease in postharvest longevity for the first four primary flowers. Longevity of the fifth primary flower and total postharvest life of the five primary flowers was unaffected by storage.

Free access

Anil P. Ranwala, William B. Miller, Terri I. Kirk, and P. Allen Hammer

The interactions of ancymidol drenches, postgreenhouse cold storage, and hormone sprays on postharvest leaf chlorosis and flower longevity of `Nellie White' Easter lilies (Lilium longiflorum Thunb.) were investigated. Ancymidol drenches (0.5 mg/plant twice) during early growth resulted in leaf chlorosis in the greenhouse which intensified further during postharvest. Cold storage (4 °C) of puffy bud stage plants for 2 weeks also accelerated leaf chlorosis. The combination of ancymidol treatment with cold storage resulted in the most severe leaf chlorosis. Promalin (GA4+7 and BA each at 100 mg·L-1) sprays completely prevented postharvest leaf chlorosis, whereas ProGibb (GA3 at 1000 mg·L-1) was ineffective. Cold storage reduced flower longevity and increased bud abortion, however, the degree of bud abortion varied among experiments in different years. Both ProGibb and Promalin sprays increased flower longevity. Compared to positive DIF (difference between day and night temperature) grown plants, forcing under negative DIF (-8 °C) increased the severity of postharvest leaf chlorosis. Leaves were sampled from basal, middle, and upper sections of the stem after 4 and 12 days in a postharvest evaluation room, and analyzed for soluble carbohydrates and N. Total leaf soluble carbohydrates and N concentrations were less in basal and middle sections of negative DIF-grown plants than in positive DIF-grown plants. Leaf chlorosis was associated with depletion of soluble carbohydrates and N in the leaves. Chemical names used: α-cyclopropyl-α-(p-methoxyphenyl)-5-pyrimidinemethanol (ancymidol); gibberellic acid (GA3); gibberellins A4A7 (GA4+7); N-(phenylmethyl)-1H-purine 6-amine (benzyladenine).

Free access

Brian E. Whipker, Terri Kirk, P. Allen Hammer, and William B. Miller

`Nellie White' Easter lilies were grown under two day/night temperature regimes, a positive differential temperature (+DIF) of 15.5C night / 21C day temperature or a negative differential temperature (-DIF) of 19.4C night / 14.4C day temperature. At anthesis the plants were divided into 15 leaf-node segments, starting from the plant base (nodal position 0-15). The segments were further subdivided into leaf, stem and flower tissue parts, with fresh and dry weights being recorded, and tissue being analyzed for NH4-N, P, K, Ca, Mg, Na, Cu, B, Fe, Mn, and Zn.

Of the elements studied, only P content was statistically different at the DIF treatment × nodal position × tissue type interaction. Total 1eaf P per segment was higher in the -DIF plants, with the concentration increasing from 0.19 mg at nodal position O-15 up to the 1.34 mg at nodal position 46-60, compared to 0.16 and 0.76 mg, respectively, for the +DIF plants. There were also significant differences at the DIF treatment × tissue type, with -DIF leaf tissue having a higher total content of P, K, Mg, Ca, Na and B, while Cu was lower, than the +DIF leaf tissue. Results indicate that the distribution of nutrients in Easter lily plants are affected by growing temperature regimes.

Free access

Mary Taylor Haque, Joseph P. Albano, William B. Miller, Ted Whitwell, and Kristy Thomason

Student Teaching and Research Initiative through Volunteer Employment (STRIVE) is an innovative new program developed collaboratively by faculty and students to offer students work experience opportunities in the Dept. of Horticulture while assisting with horticultural needs. The program promotes volunteerism and education while strengthening participating faculty, staff, and students in areas of research, teaching, or public service. STRIVE requires a voluntary commitment of 3 h/week in an area agreed on by participants and their supervisors. Participants are formally acknowledged by the department for their contributions after completing the semester-long program. Students participating thus far have assisted in teaching laboratories, program development, and greenhouse management.

Free access

Ricardo Campos, Ma. Estela Peralta, Daniel W. Bearden, and William B. Miller

Soluble carbohydrate extracts from Antirrhinum majus L. leaves were fractionated by ion exchange chromatography. Putative mannitol was tentatively identified by retention behavior on two high performance liquid chromatography columns. Mannitol was confirmed using 1H and 13C nuclear magnetic resonance (NMR), and by gas chromatography (GC) and mass spectroscopy (MS). The melting point of authentic and putative mannitol, and a 1:1 mix was from 164 to 166°C. Using the EDTA-phloem exudate technique, mannitol was detected in phloem tissue associated with mature flowers, flower buds, and mature leaves, suggesting that mannitol is translocated in Antirrhinum.

Full access

Shawn D. Lyons, William B. Miller, H. Christian Wien, and Neil S. Mattson

When grown in containers, pineapple lily (Eucomis sp.) can produce excessively long foliage and tall scapes, particularly in cultivars with tall pineapple lily (Eucomis comosa) parentage. Height control, through the use of plant growth regulators (PGRs), is necessary to improve crop quality of potted pineapple lily. In year 1 of these trials, bulbs of cultivars Reuben, Tugela Jade, and Tugela Gem were given substrate drenches of flurprimidol or paclobutrazol, each at 2, 4, or 6 mg per 6-inch pot. Drenches were applied at the “visible inflorescence” stage. As concentration increased, scapes were generally shorter in all cultivars for both PGRs, but there was no effect on foliage length or production time. At the rates tested, the reduction in scape length was insufficient to produce marketable plants of the three cultivars. In the second year, substrate drenches were applied at an earlier stage than in year 1, at “leaf whorl emergence,” when shoots were about 7 cm tall. The PGR treatments were notably more effective at controlling plant height in the second year. As concentration increased, scape and foliage length was reduced relative to the controls in all three cultivars for both PGRs. For all cultivars, inflorescence leaning and toppling were sharply reduced at all application rates compared with untreated controls. The reduction in plant height observed in year 2, particularly in plants treated with 4 or 6 mg/pot, resulted in plants with compact scapes and foliage proportional with their 6-inch containers.