Search Results

You are looking at 61 - 70 of 77 items for

  • Author or Editor: William B. Miller x
  • Refine by Access: All x
Clear All Modify Search
Free access

Kelly J. Prevete, R. Thomas Fernandez, and William B. Miller

Boltonia asteroides L. `Snowbank' (Snowbank boltonia), Eupatorium rugosum L. (eastern white snakeroot), and Rudbeckia triloba L. (three-lobed coneflower) were subjected to drought for 2, 4, and 6 days during the fall and spring. Leaf gas exchange, leaf water potential, growth, and carbohydrate partitioning were measured during drought and throughout the following growing season. Leaf gas exchange of B. asteroides was not affected by drought treatment in the fall, not until day 6 of spring drought, and there were no long-term effects on growth. Transpiration and stomatal conductance of R. triloba decreased when substrate moisture decreased to 21% after drought treatment during both seasons. Assimilation of drought-treated R. triloba decreased when substrate moisture content decreased to 12% during spring but was not affected by drought in the fall. There was a decrease in the root-to-shoot ratio of R. triloba that had been treated for 4 days, which was attributed to an increase in the shoot dry weight (DW) of treated plants. Reductions in spring growth of E. rugosum were observed only after fall drought of 6 days, and there were no differences in final DWs of plants subjected to any of the drought durations. Spring drought had no effect on growth index or DW of any of the perennials. Boltonia asteroides and R. triloba had increases in low-molecular-weight sugars on day 4 of drought, but E. rugosum did not have an increase in sugars of low molecular weight until day 6 of drought. Differences in drought response of B. asteroides, E. rugosum, and R. triloba were attributed to differences in water use rates.

Free access

Jiunn-Yan Hou, William B. Miller, and Yao-Chien Alex Chang

Phalaenopsis is one of the most important ornamental crops and is frequently transported between continents. In this study, the effects of the duration and temperature of simulated dark shipping (SDS) and the temperature difference between cultivation greenhouses and shipping containers on the carbohydrate status and post-shipping performance were investigated. With a prolonged SDS from 0 to 40 days at 20 °C, the percentage of the vegetative Phalaenopsis Sogo Yukidian ‘V3’ plants with yellowed leaves increased from 0% to 50%, and the total carbohydrate contents in the shoot and roots gradually decreased over time. Furthermore, roots had greater reductions in glucose and fructose concentrations than the shoot after 40 days of SDS. After 7 days of SDS, the youngest bud and the nearly open bud on blooming plants of Phalaenopsis amabilis were found to be the most negatively affected among flowers and buds of all stages. These buds had lower soluble sugar concentrations and flower longevities compared with those of unshipped plants. The results of a temperature experiment showed that yellowing of the leaves and chilling injury (CI) occurred in Phalaenopsis Sogo Yukidian ‘V3’ after 21 days of SDS at 25 and 15 °C, respectively, regardless of pre-shipping temperature acclimation. However, 10 days of acclimation at 25/20 °C (day/night) before SDS reduced CI and reduced the time to inflorescence emergence. Higher accumulations of sucrose in the shoot and glucose and fructose in roots were found after 21 days of SDS at 15 °C compared with those at 25 and 20 °C. In conclusion, the carbohydrate status of Phalaenopsis was positively related to the post-performance quality. A reduction in the commercial quality after SDS may be attributed to a decline in carbohydrates. The optimal temperature for long-term dark shipping is 20 °C, and we recommend providing 10 days of lower-temperature acclimation (25/20 °C) before shipping to enhance the chilling tolerance and to promote early spiking of Phalaenopsis plants.

Free access

Joseph P. Albano, William B. Miller, and Mary C. Halbrooks

A specific physiological disorder, bronze speckle (J.P.A.'s nomenclature), was consistently induced in `First Lady' and `Voyager' marigold with Fe-DTPA concentrations greater than 0.018 mm Fe-DTPA (1 ppm) applied to a soilless medium. The disorder was characterized by specific symptomology distinguished visually by speckled patterns of chlorosis and necrosis, and downward curling and cupping of leaves. The percentage of total leaf dry weight affected with symptoms generally increased with increasing Fe-DTPA treatments. Symptomatic leaf tissue had a greater Fe concentration than corresponding asymptomatic leaf tissue. Leaf Mn concentrations in symptomatic and asymptomatic tissue were similar. In `First Lady', older leaf tissue accumulated more total Fe and was associated with more severe symptoms than younger tissue. Media leachate Fe concentrations increased over 6 weeks and were larger at greater Fe-DTPA treatments. Adjustment of nutrient solution pH to 4.0, 5.25, or 6.5 did not alter media pH, nor did it prevent disorder symptoms. Application of Fe-DTPA containing nutrient solution to a soilless medium resulted in leachate Fe levels 3 times greater than for FeSO4 treatments. Chemical names used: ferric diethylenetriaminepentaacetic acid, monosodium salt (Fe-DTPA).

Free access

Nihal C. Rajapakse, William B. Miller, and John W. Kelly

Low-temperature storage potential of rooted cuttings of garden chrysanthemum [Dendranthema ×grandiflorum (Ramat.) Kitamura] cultivars and its relationship with carbohydrate reserves were evaluated. Storage of chrysanthemum cuttings at -1 and -3 °C resulted in freezing damage. Visual quality of rooted cuttings stored at 0 or 3 °C varied among cultivars. Quality of `Emily' and `Naomi' cuttings was reduced within a week by dark storage at 0 or 3 °C due to leaf necrosis, while `Anna' and `Debonair' cuttings could be held for 4 to 6 weeks without significant quality loss. In `Anna' and `Debonair', low-temperature storage reduced the number of days from planting to anthesis regardless of storage duration. However, flowers of plants grown from stored cuttings were smaller than those of nonstored cuttings. At the beginning of storage, `Emily' and `Naomi' had lower sucrose, glucose, and fructose (soluble sugars) content compared to `Anna' and `Debonair'. Regardless of temperature, leaf soluble sugar was significantly reduced by dark storage for 4 weeks. In stems, sucrose and glucose were reduced while fructose generally increased during low-temperature storage probably due to the breakdown of fructans. Depletion of soluble sugars and a fructan-containing substance during low-temperature dark storage was greater in `Emily' and `Naomi' than in `Anna' and `Debonair'. Low irradiance [about 10 μmol·m-2·s-1 photosynthetically active radiation (PAR) from cool-white fluorescent lamps] in storage greatly improved overall quality and delayed the development of leaf necrosis in `Naomi'. Cuttings stored under light were darker green and had a higher chlorophyll content. Leaf and stem dry weights increased in plants stored under medium and high (25 to 35 μmol·m-2·s-1 PAR) irradiance while no change in dry weight was observed under dark or low light. Results suggest that the low-temperature storage potential of chrysanthemum cultivars varies considerably, and provision of light is beneficial in delaying the development of leaf necrosis and maintaining quality of cultivars with short storage life at low temperatures.

Free access

Christopher B. Cerveny, William B. Miller, Thomas Björkman, and Neil S. Mattson

The published literature is inconsistent with recommendations for hydrating Ranunculus asiaticus (L.) dried tuberous roots, a common practice in commercial production systems for this ornamental geophyte. Imbibition rate increased with hydration temperature but to lower equilibrium moisture content than when hydrated at cooler temperatures. In the greenhouse, survival was predicted to be greatest when tubers were hydrated at 20 °C. Plant height, visual quality, and foliar dry weight followed a similar trend 4 weeks after planting. These results demonstrate that a hydration temperature between 15 and 25 °C is required to obtain good quality when growing R. asiaticus from its dried tuberous roots.

Full access

Anil P. Ranwala, Garry Legnani, Mary Reitmeier, Barbara B. Stewart, and William B. Miller

We evaluated preplant bulb dips in three commercial plant growth retardants [ancymidol (A-Rest), paclobutrazol (Bonzi), and uniconazole (Sumagic)] for height control in seven oriental hybrid lily (Lilium) cultivars (Aubade, Berlin, Casa Blanca, Muscadet, Sissi, Star Gazer, and Tom Pouce), and seven LA-hybrid lily [hybrids resulting from crosses between easter lily (Lilium longiflorum) and Asiatic hybrids] cultivars (Aladdin's Dazzle, Best Seller, Cebeco Dazzle, Royal Dream, Royal Parade, Royal Perfume, and Salmon Classic) grown in containers. A 1-min dip into a range of concentrations of each product was used to determine the optimum concentrations for height control. The results indicate that bulb dips, especially with uniconazole and paclobutrazol, can be a highly effective means of height control in hybrid lilies. Cultivars varied in their response to growth retardant treatments. In general, LA-hybrid lilies were much more responsive to the growth retardant treatments than oriental hybrids and required lower rates for comparable height control. Delays in flowering, increased bud abortion and leaf yellowing were observed only with high concentrations of uniconazole or paclobutrazol where the height reduction was also too excessive for a commercially acceptable crop.

Free access

Ricardo Campos, Ma. Estela Peralta, Daniel W. Bearden, and William B. Miller

Soluble carbohydrate extracts from Antirrhinum majus L. leaves were fractionated by ion exchange chromatography. Putative mannitol was tentatively identified by retention behavior on two high performance liquid chromatography columns. Mannitol was confirmed using 1H and 13C nuclear magnetic resonance (NMR), and by gas chromatography (GC) and mass spectroscopy (MS). The melting point of authentic and putative mannitol, and a 1:1 mix was from 164 to 166°C. Using the EDTA-phloem exudate technique, mannitol was detected in phloem tissue associated with mature flowers, flower buds, and mature leaves, suggesting that mannitol is translocated in Antirrhinum.

Free access

Mary Taylor Haque, Joseph P. Albano, William B. Miller, Ted Whitwell, and Kristy Thomason

Student Teaching and Research Initiative through Volunteer Employment (STRIVE) is an innovative new program developed collaboratively by faculty and students to offer students work experience opportunities in the Dept. of Horticulture while assisting with horticultural needs. The program promotes volunteerism and education while strengthening participating faculty, staff, and students in areas of research, teaching, or public service. STRIVE requires a voluntary commitment of 3 h/week in an area agreed on by participants and their supervisors. Participants are formally acknowledged by the department for their contributions after completing the semester-long program. Students participating thus far have assisted in teaching laboratories, program development, and greenhouse management.

Free access

Anil P. Rartwala, William B. Miller, P. Allen Hammer, and Terri Kirk

The possible factors contributing to leaf yellowing during the postharvest phase of Easter lilies (Lilium longiflorum Thunb.) were investigated. Higher levels of growth retardants, forcing under negative DIF conditions, cold storage (4.0°C) at the `puffy bud' stage and shipping stress were shown to increase leaf yellowing during postharvest holding. Concentrations of soluble carbohydrates and starch under inductive and non-inductive conditions were determined to investigate the correlation of it to leaf yellowing. Lilies grown under negative DIP had lower concentrations of leaf, stem and flower soluble carbohydrates and starch compared to plants grown under positive DIF. Investigation of diurnal fluctuations of leaf carbohydrates revealed low carbohydrate levels in negative DIP-forced plants at all times during the diurnal cycle. Supplemental light (50-60 μmo1 m-2s-1) during cold storage increased leaf carbohydrate levels. Higher levels of bud abortion and reduced flower longevity were also observed under conditions inductive of leaf yellowing.

Free access

Brian E. Whipker, Terri Kirk, P. Allen Hammer, and William B. Miller

`Nellie White' Easter lilies were grown under two day/night temperature regimes, a positive differential temperature (+DIF) of 15.5C night / 21C day temperature or a negative differential temperature (-DIF) of 19.4C night / 14.4C day temperature. At anthesis the plants were divided into 15 leaf-node segments, starting from the plant base (nodal position 0-15). The segments were further subdivided into leaf, stem and flower tissue parts, with fresh and dry weights being recorded, and tissue being analyzed for NH4-N, P, K, Ca, Mg, Na, Cu, B, Fe, Mn, and Zn.

Of the elements studied, only P content was statistically different at the DIF treatment × nodal position × tissue type interaction. Total 1eaf P per segment was higher in the -DIF plants, with the concentration increasing from 0.19 mg at nodal position O-15 up to the 1.34 mg at nodal position 46-60, compared to 0.16 and 0.76 mg, respectively, for the +DIF plants. There were also significant differences at the DIF treatment × tissue type, with -DIF leaf tissue having a higher total content of P, K, Mg, Ca, Na and B, while Cu was lower, than the +DIF leaf tissue. Results indicate that the distribution of nutrients in Easter lily plants are affected by growing temperature regimes.