Search Results

You are looking at 61 - 70 of 71 items for

  • Author or Editor: David Byrne x
  • Refine by Access: All x
Clear All Modify Search
Free access

Valdomiro A.B. de Souza, David H. Byrne, and Jeremy F. Taylor

Breeding values (BVs) for four plant (bloom date, fruit development period, fruit density, and blind node propensity) and five fruit (weight, blush, shape, soluble solids, and titratable acidity) traits of 28 peach [Prunus persica (L.) Batsch (Peach Group)] genotypes used as parents in the Texas A&M University peach breeding program were predicted using best linear unbiased prediction (BLUP). Data from seedlings of 108 families developed from 42 peach parents were analyzed by using a mixed linear model, with years treated as fixed and additive genotypes as random factors. The precision of the predictions was high for most parental genotypes, as indicated by the correlations (rTI) between predicted and true BVs and the standard error of the predictions (SEP). In most cases, the higher the number of progeny, the better the agreement between predicted and true BVs for that parent. Parents with observations from more than 30 seedlings had a rTI ≥ 0.90 and smaller SEPs. For all traits analyzed, the lowest precision (low rTI and high SEP) was observed for `Flordaking', whose predicted BVs was based only on pedigree information.

Open access

H. Brent Pemberton, Kevin Ong, Mark Windham, Jennifer Olson, and David H. Byrne

Rose rosette disease (RRD) is incited by a negative-sense RNA virus (genus Emaravirus), which is vectored by a wind-transported eriophyid mite (Phyllocoptes fructiphilus). Symptoms include witches broom/rosette-type growth, excessive prickles (thorns), discolored and distorted growth, and, unlike most other rose diseases, usually results in plant death. RRD is endemic to North America and was first described in Manitoba, Wyoming, and California in the 1940s. It has spread east with the aid of a naturalized rose species host and has become epidemic from the Great Plains to the East Coast of North America on garden roses in home and commercial landscapes where losses have been high. The disease was suggested to be incited by a virus from the beginning, but only recently has this been confirmed and the virus identified. The presence of the vector mite on roses has been associated with RRD since the first symptoms were described. However, more recently, the mite was demonstrated to be the vector of the disease and confirmed to transmit the virus itself. As a result of the RRD epidemic in North America and its effects on the national production and consumer markets for roses, a research team comprising five major universities (Texas, Florida, Tennessee, Oklahoma, and Delaware), a dozen growers and nurseries (all regions), six rose breeding programs (California, Wisconsin, Texas, and Pennsylvania), the major rose testing programs (Earth-Kind and AGRS), the major rose organization (American Rose Society), and the major trade organization AmericanHort has formed. This research project has been funded by the Specialty Crops Research Initiative through the U.S. Department of Agriculture (USDA) with the short-term objective of improving and disseminating best management practices (BMPs) and the long-term goal of identifying additional sources of resistance and developing the genetic tools to quickly transfer resistance into the elite commercial rose germplasm.

Free access

Valdomiro A.B. de Souza, David H. Byrne, and Jeremy F. Taylor

Seedlings of 108 families from crosses among 42 peach [Prunus persica (L.) Batsch] cultivars and selections were evaluated for six plant characteristics in 1993, 1994, and 1995. The data were analyzed by using a mixed linear model, with years treated as fixed and additive genotypes as random factors. Best linear unbiased prediction (BLUP) was used to estimate fixed effects. Restricted maximum likelihood (REML) was used to estimate variance components, and a multiple trait model was used to estimate genetic and phenotypic covariances among traits. The narrow-sense heritability estimates were 0.41, 0.29, 0.48, 0.47, 0.43, and 0.23 for flower density, flowers per node, node density, fruit density, fruit set, and blind node propensity, respectively. Most genetic correlations among pairs of traits were ≥0.30 and were, in general, much higher than the corresponding phenotypic correlations. Flower density and flowers per node (ra = 0.95), fruit density and fruit set (ra = 0.84) and flower density and fruit density (ra = 0.71) were the combinations of traits that had the highest genetic correlation estimates. Direct selection practiced solely for flower density (either direction) is expected to have a greater effect on fruit density than direct selection for fruit density.

Free access

David R. Byrnes, Fekadu F. Dinssa, Stephen C. Weller, and James E. Simon

Vegetable amaranth (Amaranthus sp.), a leafy vegetable crop consumed around the world, is actively promoted as a source of essential micronutrients to at-risk populations. Such promotion makes micronutrient content essential to the underlying value of this crop. However, the extent to which micronutrient content varies by effect of genotype is not clear, leaving breeders uninformed on how to prioritize micronutrient contents as the criteria for selection among other performance parameters. A total of 32 entries across seven Amaranthus species were field-grown and analyzed for Fe, Mg, Ca, Zn, yield, height, and canopy spread comprising 20 entries at New Jersey in 2013; 12 entries at Arusha, Tanzania, in 2014; and 20 entries at New Jersey in 2015. The genotype effect was significant in all trials for Fe, Mg, Ca, Zn, total yield, marketable yield, height, and canopy spread. The Fe content range was above and below the breeding target of 4.2 mg/100 g Fe in all environments except for New Jersey 2015, where all entries were found to accumulate in levels below the target. All entries in each of the environments contained levels of Ca and Mg above breeding targets, 300 mg/100 g Ca and 90 mg/100 g Mg. None of the entries in any environment met the Zn breeding target of 4.5 mg/100 g Zn.

Free access

Alberto C.Q. Pinto, Suzanne M. Dethier Rogers, and David H. Byrne

The influence of medium formulation, methods of ovule support, and ovule perforation on in vitro growth of immature peach [Prunus persica (L.) Batsch] embryos (4.0 to 8.7 mm long) was investigated. Maximum embryo dry weights were attained with vermiculite support, ovule perforation, and 10% sucrose in the medium. At high sucrose levels, all three tested media (Monnier, modified Murashige and Skoog, or modified Stewart and Hsu medium) performed similarly. Adding IAA and kinetin to culture media did not enhance embryo growth. Using the vermiculite support system, small embryos of early maturing peach cultivars, obtained at fruit maturity, were cultured successfully and used as maternal parents in breeding programs. Chemical name used: indole acetic acid (IAA).

Free access

Valdomiro A.B. de Souza, David H. Byrne, and Jeremy F. Taylor

Heritability estimates are useful to predict genetic progress among offspring when the parents are selected on their performance, but they also provide information about major changes in the amount and nature of genetic variability through generations. Genetic and phenotypic correlations, on the other hand, are useful for better planning of selection programs. In this research, seedlings of 39 families resulting from crosses among 27 peach [Prunus persica (L.) Batsch] cultivars and selections were evaluated for date of full bloom (DFB), date of ripening (DR), fruit period development (FDP), flower density (FD), node density (ND), fruit density (FRD), fruit weight (WT), soluble solids content (SS), apical protuberance (TIP), red skin color (BLUSH), and shape (SH) in 1993 and 1994. The data were analyzed using the mixed linear model. The best linear unbiased prediction (BLUP) was used to estimate fixed effects and predict breeding values (BV). Restricted maximum likelihood (REML) was used to estimate variance components, and a multiple-trait model to estimate genetic and phenotypic covariances between traits. The data indicates high heritability for DFB, DR, FDP, and BLUSH, intermediate heritability for WT, TIP, and SH, and low heritability for FD, ND, FRD, and SS. They also indicate year effect as a major environmental component affecting seedling performance. High correlation estimates were found between some traits, but further analysis is needed to determine their significance.

Free access

Valdomiro A.B. de Souza, David H. Byrne, and Jeremy F. Taylor

Thirteen peach [Prunus persica (L.) Batsch] fruit characteristics were investigated for 3 years, 1993, 1994, and 1995, in College Station, Texas, to determine heritability, genetic and phenotypic correlations, and predicted response to selection. Seedlings of 108 families resulting from crosses among 42 peach cultivars and selections were used in the evaluations. A mixed linear model, with years treated as fixed and additive genotypes as random factors, was employed to analyze the data. Best linear unbiased prediction (BLUP) was used to estimate fixed effects. Restricted maximum likelihood (REML) was used to estimate variance components, and a multiple trait model was used to estimate genetic and phenotypic covariances between traits. Genetic and phenotypic correlations ≥0.65 and <0.30 were considered strong or very strong and weak, respectively. Date of ripening, fruit development period (FDP) and date of full bloom had the highest heritability (h2) estimates, 0.94, 0.91, and 0.78, respectively. Fruit cheek diameter and titratable acidity (h2 = 0.31) were the traits with the lowest estimates. Fruit development period, fruit blush, and date of ripening had the highest predicted selection responses, whereas fruit suture, fruit cheek, L/W12 (ratio fruit length to average fruit diameters), and fruit tip had the lowest values. Most genetic correlations were ≥0.30 and were, in general, much higher than the corresponding phenotypic correlations. All four measures of fruit size were genetically and phenotypically very strongly correlated. Important genetic correlation estimates were also observed for date of ripening with FDP (ra = 0.93), date of ripening and FDP with fruit blush (ra = -0.77, ra = -0.72), SS (percent soluble solids) (ra = 0.63, ra = 0.62) and TA (ra = 0.55, ra = 0.64), and SS with TA (ra = -0.56). Direct selection practiced solely for early ripening and short FDP is expected to have a greater effect on correlated traits than direct selection for early bloom and large fruit mass.

Free access

Yan Ma, M. Nurul Islam-Faridi, Charles F. Crane, David M. Stelly, H. James Price, and David H. Byrne

To our knowledge, there has been no published technique to produce consistently high-quality slides of somatic chromosomes of roses (Rosa sp.). Therefore, various pretreatments, fixatives, digestions, stains, and maceration and squashing methods were tested to identify a procedure to produce clear, well-spread chromosomes from shoot tips. The best results were obtained after pretreatment in a mixture of 0.1% colchicine and 0.001 m 8-hydroxyquinoline for 4 h, and fixation in 2 acetone: 1 acetic acid (v/v) with 2% (w/v) polyvinylpyrrolidone. The darkest-stained chromosomes were obtained with carbol-fuchsin staining of air-dried cell suspensions that had been spread in 3 ethanol: 1 acetic acid (v/v).

Free access

David H. Byrne, Patricia Klein, Muqing Yan, Ellen Young, Jeekin Lau, Kevin Ong, Madalyn Shires, Jennifer Olson, Mark Windham, Tom Evans, and Danielle Novick

Rose rosette disease (RRD) whose causal agent, the Emaravirus Rose rosette virus (RRV), was only recently identified has caused widespread death of roses in the midwestern and eastern sections of the United States. A national research team is working on the detection and best management practices for this highly damaging disease. Unfortunately, little is known about the host plant resistance to either the causal viral agent or its vector, the eriophyid mite Phyllocoptes fructiphilus. Thus far, the only confirmed resistance is among Rosa species. Of the over 600 rose cultivars observed, only 7% have not exhibited symptoms of RRD. Replicated trials are in progress to confirm resistance and/or susceptibility of ≈300 rose accessions in Tennessee and Delaware. Rose is a multispecies cultivated complex that consists of diploid, triploid, and tetraploid cultivars. The basic breeding cycle is 4 years with a 3-year commercial trial coupled with mass propagation before release. Thus, if only one breeding cycle is needed, a new cultivar could be produced in 7 years. Unfortunately, for the introgression of a new trait such as disease resistance from a related species into the commercial rose germplasm, multiple generations are required which can easily take two decades from the first cross to cultivar release. Research is ongoing to develop a rapid selection procedure for resistance to RRD with the aid of molecular markers associated with the resistance. Such an approach has the potential of reducing the breeding cycle time by 50% and increasing the efficiency of seedling and parental selection manifold, leading to commercially acceptable rose cultivars with high RRD resistance in less time and with less expense.

Free access

William J. Sciarappa, Jim Simon, Ramu Govindasamy, Kathleen Kelley, Frank Mangan, Shouan Zhang, Surendran Arumugam, Peter Nitzsche, Richard Van Vranken, Stephen Komar, Albert Ayeni, Gene McAvoy, Chung Park, William Reichert, David Byrnes, Qingli Wu, Brian Schilling, and Ricardo Orellana

The rapid expansion of Asian populations in the United States presents significant opportunities and challenges for the eastern U.S. produce sector to take advantage of their close proximity to densely populated areas. Initial crop studies followed by ethnic consumer and crop surveys were conducted to examine vegetable, leafy green, and herb consumption and expenditures among Chinese, Asian Indians, and other Asian groups. Consumer choices were used to prioritize subsequent production trials. Family expenditures were determined for specific Asian produce types and total produce purchases. This market data were extrapolated to the east coast Asian populations to assess potential market size (90% confidence interval, error margin 5.6%). Chinese consumer values ranged from $245 to $296 million per annum and Asian Indians ranged from $190 to $230 million per annum. The average annual fresh fruit and vegetable expenditures by both Asian groups were 2 to 3.5 times respective national averages. Leading Chinese vegetables determined by average expenditures were baby bok choy, pak choy, oriental eggplant, snow pea, oriental spinach, and napa cabbage. Highest expenditure of leafy greens and herbs for Chinese consumers were chives and garland chrysanthemum. This market-driven survey reported consumption of over 100 Asian crops and 42 cultivars were ranked “feasible” to grow in the eastern section of the United States. Horticultural matrices of selection criteria narrowed the list to the most promising candidates for production. As a result, 28 cultivars were then grown in University research and demonstration plots at Massachusetts, New Jersey, and Florida in determining growth characteristics and yield to focus horticultural crop producers. Leading vegetable cultivars for Asian Indian consumers were bitter gourd, eggplant, fenugreek leaves, cluster beans, and bottle gourd. Leading leafy greens and herbs for Asian Indians were turmeric, fenugreek, sorrel spinach, and radish greens. Most of these Asian cultivars were demonstrated to grow well in the three main growing zones of 5, 7, and 9. Phytochemical attributes such as antioxidant activity, polyphenols, and mineral contents were analyzed for several of the leading crop candidates. This initial field and laboratory data shows that many of these ethnic crops can be grown in the eastern United States to direct production opportunities and are nutrient rich to help drive consumer demand.