Search Results

You are looking at 51 - 60 of 64 items for

  • Author or Editor: Terri Starman x
  • Refine by Access: All x
Clear All Modify Search
Free access

Alison Bingham Jacobson, Terri W. Starman, and Leonardo Lombardini

Wilting during shelf life is a major cause of postharvest shrink for bedding plants shipped long distances from production greenhouses to retail outlets. The objective of this research was to determine if irrigation at lower, constant substrate moisture content (SMC) during greenhouse production would be a feasible way to acclimate plants for reduced shrinkage during shelf life while potentially conserving irrigation water. In two separate experiments conducted in the fall and spring seasons, rooted plugs of Angelonia angustifolia ‘Angelface Blue’ (angelonia) were grown in greenhouse production until a marketable stage in substrates irrigated at SMC levels of 10%, 20%, 30%, and 40% using a controlled irrigation system. At the end of the greenhouse production stage, plants were irrigated to container capacity and subjected to a simulated shipping environment in shipping boxes in the dark for 2 days. After shipping, plants were placed back in the greenhouse and watered minimally to simulate a retail environment. Data were taken at the end of each stage, i.e., greenhouse production, simulated shipping, and simulated retail. Results indicated that as SMC decreased from 40% to 10%, plants were shorter in height but had proportional and more compact flowering sections. The volume of water received by the 40% SMC plants was three times greater (fall) and 12 times greater (spring) than the 20% SMC plants during greenhouse production and two times greater (fall) and nine time greater (spring) during simulated retail. During production, midday water potentials decreased as the SMC levels decreased, but at the end of the simulated retail, the midday water potentials were the same, suggesting that plants that were drought-stressed during production were acclimated to lower water levels experienced in retail settings. Overall, the 20% SMC treatment produced the best postharvest quality plant resulting from reduced plant height without detrimental effects on flowering. The results demonstrate that while conserving water, controlled irrigation at a lower SMC can produce high-quality plants that have equal shelf life to those that are irrigated at high levels.

Free access

Terri Woods Starman, Millie S. Williams, and James E. Faust

The objective was to determine the optimum number of plants and the number of pinches required to market a basket for hanging basket production using alternative floriculture species. The number of plants per pot varied from one to four, and the number of manual pinches per basket ranged from 0 to 2. Several species were evaluated in spring of 1996 and heat tolerance was assessed throughout the summer. Plugs (50–95 plugs per flat) were transplanted into 25-cm hanging baskets in a 22/18°C (venting/night temperature set points) glasshouse. Three to four plants were necessary for Scaevola aemula `Fancy Fan Falls' and Evolvulus glomeratus `Blue Daze' to produce a marketable basket. One plant per pot was sufficient for Abutilon hybrid `Apricot', Portulaca oleraceae `Apricot', and Tibouchina `Spanish Shaw' without sacrificing quality; however, an additional 1 to 3 weeks production time was needed in comparison to the four plants per pot treatment. Abutilon and Portulaca required one pinch, while Tibouchina did not require pinching. All plants × pinch combinations produced quality baskets with Sutera cordata `Mauve Mist' and Diascia hybrid `Ruby Fields'; therefore, production methods should be based on growers' scheduling and cost analysis. Abutilon, Evolvulus, Portulaca, Scaevola, and Tibouchina performed well in hanging baskets throughout the summer. Two species in the trial, Orthosiphon stamineus `Lavender' and Tabernamontana coronaria, displayed upright growth habits and would be best for uses other than hanging basket production.

Free access

Min Lin, Terri W. Starman, Yin-Tung Wang, and Genhua Niu

The flowering time and flower quality of three hybrid Dendrobium nobile cultivars in relation to light intensity during cooling and duration of vernalization were studied in the first experiment. Mature Dendrobium Red Emperor ‘Prince’, Den. Sea Mary ‘Snow King’, and Den. Love Memory ‘Fizz’ plants were vernalized at 10 °C under 300 to 350 μmol·m−2·s−1 photosynthetic photon flux (PPF) (12-h photoperiod) or darkness, each with four cooling durations (2, 4, 6, or 8 weeks). Plants were forced in a greenhouse after vernalization. At least 4 weeks of 10 °C cooling in light was needed for complete flower initiation of Den. Red Emperor ‘Prince’, whereas Den. Sea Mary ‘Snow King’ and Den. Love Memory ‘Fizz’ only needed 2 weeks of 10 °C cooling regardless of light. For all three cultivars, darkness during vernalization slightly delayed flowering and resulted in fewer but larger flowers. Longer cooling duration delayed flowering, decreased flower longevity, and produced more and larger flowers. In a second experiment, Den. Love Memory ‘Fizz’ plants were vernalized at 15 °C for 4 weeks under a 12-h photoperiod and PPF of 0, 50, 100, or 200 μmol·m−2·s−1. Compared with 200 μmol·m−2·s−1, low PPF at 50 or 100 μmol·m−2·s−1 did not affect flowering time or flower qualities; however, darkness delayed flowering and reduced flower qualities except flower diameter.

Open access

Mason Marshall, Terri Starman, H. Brent Pemberton, and Calvin Trostle

Sunflower ‘Sunfinity’ (Helianthus hybrida) can be produced as a potted plant if apical dominance is removed with a manual pinch to control plant height and promote branching and flower number. Chemical pinching agents such as dikegulac sodium could prove to be valuable tools to reduce the labor and costs associated with manual pinching. Our objective was to determine the time of seedling growth and concentration of dikegulac sodium foliar spray application that would result in morphology similar to manually pinched plants. Dikegulac sodium was applied to sunflower ‘Sunfinity’ seedlings at one of four concentrations increasing from 200 to 500 mg⋅L−1 at the time of growth when the first, second, or third node (N1, N2, or N3) was the apical node and axillary stems at those nodes were undeveloped. Applications of 400 mg⋅L−1 at N3 and 500 mg·L−1 at N2 removed apical dominance because of total senescence of the apical meristem and produced a well-branched plant similar to that subjected to manual pinching. Apical dominance was temporarily inhibited without senescence of the apical meristem when 400 mg⋅L−1 was applied at N2 and when 500 mg⋅L−1 was applied at N3, which, nevertheless, resulted in branching that formed a well-rounded canopy.

Full access

Genhua Niu, Raul I. Cabrera, Terri W. Starman, and Charles R. Hall

Significance and objectives

Many communities in Texas and other states are facing water shortages and water quality issues (poor or marginal water quality). A tremendous population growth in many southern states is also putting a strain on their water supplies and creating a worrisome competition between urban and agricultural activities. Future drought is unpredictable, and some regions have encountered extended and devastating drought periods in the past years. In addition, intensive agricultural operations like nurseries and greenhouses are under pressure to conserve water and minimize fertilizer- and chemical-laden water drainages and runoff effluents (Briggs et al., 1998;

Free access

James D. Spiers*, Fred T. Davies, Chuanjiu He, Amanda Chau, Kevin M. Heinz, and Terri W. Starman

This research focused on the influence of insecticides on plant growth, gas exchange, rate of flowering, and chlorophyll content of chrysanthemum (Dendranthema grandiflora Tzvelev cv. Charm) grown according to recommended procedures for pot plant production. Five insecticides were applied at recommended concentrations at three different frequencies: weekly (7 days), bi-weekly (14 days), or monthly (28 days). A separate treatment was applied weekly at 4× the recommended concentration. Insecticides used were: acephate (Orthene®) Turf, Tree & Ornamental Spray 97), bifenthrin (Talstar®) Flowable), endosulfan (Thiodan®) 50 WP), imidacloprid (Marathon®) II), and spinosad (Conserve®) SC). Phytotoxicity occurred in the form of leaf burn on all acephate treatments, with the greatest damage occurring at the 4× concentration. Photosynthesis and stomatal conductance were influenced primarily by the degree of aphid and/or spider mite infestation—except for acephate and endosulfan treatments (weekly and 4×), which had reduced photosynthesis with minimal insect infestations. Plants receiving imadacloprid monthly had the greatest leaf dry mass (DM). Plants treated with acephate had lower leaf and stem DM with bi-weekly and 4× treatments. Spinosad treatments at recommended concentrations had reduced stem DM, in part due to aphid infestations. The flower DM was not significantly different among treatments. There were treatment differences in chlorophyll content as measured with a SPAD-502 portable chlorophyll meter.

Free access

Alexandra García-Castro, Astrid Volder, Hermann Restrepo-Diaz, Terri W. Starman, and Leonardo Lombardini

A greenhouse experiment was conducted to evaluate the effects of water stress on leaf water potential, plant growth, and photosynthesis in purple passionflower (Passiflora incarnata). Twenty 4-L pots with two plants in each pot were arranged in a completely randomized design. Ten pots received a daily irrigation dose of 100% evapotranspiration (ET) throughout the 43-day experiment (control). The other 10 pots were subjected to a reduced irrigation (RI) treatment, which was implemented stepwise to achieve a gradual increase in stress, by irrigating them with 50% ET first, then with 25% ET and, finally, with 10% ET. The last stress phase was followed by a recovery phase in which all treatments received the same amount of water (100% ET). A lower water potential was obtained at 10% ET compared with control plants (−2.51 and −0.98 MPa, respectively). Plants in both 25% and 10% ET irrigation treatments had reduced net CO2 assimilation rates (4.25 and 3.50 μmol·m−2·s−1, respectively) than plants watered with 100% ET (8.53 and 6.77 μmol·m−2·s−1, respectively). Values of maximum carboxylation rate allowed by rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase), calculated 31 days after treatment (DAT) application (when RI plants were irrigated with 10% ET) decreased by ≈60%, whereas rate of photosynthetic electron transport and triose phosphate use (TPU) were reduced by ≈30% and ≈45% in the stress treatment compared with the control during the 10% ET irrigation period, respectively. Values of water potential and net CO2 assimilation rates in previously stressed plants were not different from the control treatment in the recovery phase, suggesting that P. incarnata plants could adapt well to landscaping situations where periods of extreme drought can be expected.

Free access

Shannon C. Mason, Terri W. Starman, R.D. Lineberger, and Bridget K. Behe

Retail sales of container gardens have increased dramatically in recent years, rising 8% from 2004 to 2005, to $1.3 billion. The objective of this study was to determine consumer preferences for three attributes of container gardens; color harmony, price, and amount of care information provided with the purchase. A hierarchical set of levels for each attribute was used in a 3 × 3 × 3 factorial conjoint analysis. A Web-based survey was conducted on 18 Oct. 2006 with 985 respondents. Survey participants were asked to complete a series of questions on a 7-point Likert scale. Survey participants also answered questions about past experiences with and future purchase intentions of container gardens as well as demographics. The three attributes accounted for 99.8% of the variance in container garden preference. Relative importance decreased from price (71%) to amount of care information (23%) to color harmony (6%). Survey participants preferred a container garden with a price point of $24.99, extensive care information, and complementary color harmony. A large portion (76%) of participants in this study indicated that they would be more likely to purchase a container garden if extensive care information was included with the purchase and 85% of participants said they would be willing to visit an Internet Web site that would provide more information on how to care for and maintain a container garden. Results of this study show that there is a potential to increase the value of a container garden through providing educational material with the purchase.

Full access

Shannon E. Beach, Terri W. Starman, Kristen L. Eixmann, H. Brent Pemberton, and Kevin M. Heinz

Twenty-one cultivars of vegetative annuals were treated with 0%, 50%, or 100% of the production fertilization rate of 300 mg·L−1 N starting 2 weeks before and continuing until harvest. At harvest, plant width, flower number, and quality rating were measured. The plants were then placed in a simulated interior environment where flower number was counted and quality rating was assigned to each plant weekly for 3 weeks. Overall, 14% of the cultivars maintained a marketable quality (i.e., quality rating of ≥3.0 of 5) for 3 weeks, 43% for 2 weeks, 38% for 1 week, and one cultivar did not maintain quality during the postharvest evaluation. Reduced end-of-production fertilization rate (EPFR) resulted in higher quality ratings for at least one additional week of simulated shelf life for three cultivars, including ‘Dreamtime Copper’ bracteantha (Bracteantha bracteata), ‘Vanilla Sachet’ nemesia (Nemesia ×hybrida), and ‘Bridal Showers’ sutera (Sutera hybrida). ‘Comet White’ and ‘Sunlight’ argyranthemum (Argyranthemum frutescens) retained flowers an additional 2 weeks and ‘Caritas Lavender’ angelonia (Angelonia angustifolia), ‘Dreamtime Copper’ bracteantha, ‘Liricashowers Deep Blue Imp.’ and ‘Starlette Trailing Purple’ calibrachoa (Calibrachoa hybrid), ‘Vanilla Sachet’ nemesia, ‘Cascadias Pink’ petunia (Petunia ×hybrida), and ‘Bridal Showers’ sutera retained flowers an additional 1 week when treated with 0% compared with 50% or 100% EPFR. Four cultivars had decreased plant width at harvest with 0% EPFR. These results indicate that reducing fertilization 2 weeks before harvest can prolong shelf life of some vegetative annuals. Differences in the length of shelf life and responses to reduced EPFR occurred among cultivars of all the affected species. Reduced EPFR did not increase the shelf life of two species, including diascia (Diascia ×hybrida) and lantana (Lantana camara).

Free access

Christine Yung-Ting Yen, Terri W. Starman, Yin-Tung Wang, and Genhua Niu

The effects of cooling temperature [constant (10, 13, 15, or 18 °C, or 15, 18, or 21 °C)] and duration (2, 3, 4, 5, or 6 weeks, or 3, 4, 5, 6, or 7 weeks) at two separate locations (College Station and Weslaco, TX) on growth and flowering of Dendrobium Sea Mary ‘Snow King’, a Dendrobium nobile Lindl. hybrid, were investigated and the cooling requirement for flowering was quantified. Interactions between temperature and cooling duration were significant on time required to reach anthesis from either the beginning or completion of cooling, average flower number per flowering node, and percentage of nodes with aborted buds. Increasing cooling duration from 2 to 6 or 3 to 7 weeks resulted in less time to reach anthesis after the completion of cooling. However, the increased cooling durations extended the time needed for producing a flowering crop. Plants cooled at a relatively higher temperature among 10, 13, and 15 °C required less time to reach anthesis after the completion of cooling. Plants had more flowering nodes and total flowers when cooled at 10, 13, or 15 °C than at 18 °C in College Station or at 15 or 18 °C than at 21 °C in Weslaco. The results suggest that 3 weeks at 13 °C has saturated the cooling requirement, and 3 weeks at 13 or 15 °C is a recommended cooling treatment that saves production cost without retarding flower development.