Search Results

You are looking at 41 - 50 of 68 items for

  • Author or Editor: Zhanao Deng x
  • Refine by Access: All x
Clear All Modify Search
Free access

Weining Wang, Yanhong He, Zhe Cao, and Zhanao Deng

Garden impatiens (Impatiens walleriana), a very important floricultural crop in the United States, has been devastated by impatiens downy mildew (IDM) in recent years. This study was conducted to determine if induced tetraploidy could improve impatiens resistance to downy mildew. Tetraploids were induced by colchicine and confirmed by chromosome counting. Compared with diploids, induced tetraploids showed significant morphological changes, including larger and thicker leaves with larger and fewer stomata; thicker and fewer stems; larger and fewer flowers; and larger pollen grains with higher stainability. In detached leaf and in vivo inoculation assays, tetraploids exhibited improved downy mildew resistance, with lower disease severity, disease incidences, and sporangia densities. Plasmopara obducens, the causal agent of IDM, underwent a similar development process in the leaf tissue of diploids and tetraploids. These results suggest that induced tetraploidy can result in significant changes in impatiens leaf and plant morphology and can increase impatiens resistance to downy mildew to a certain extent.

Free access

Zhanao Deng, Brent K. Harbaugh, and Natalia A. Peres

Free access

Zhe Cao, Shunzhao Sui, Qian Yang, and Zhanao Deng

A number of caladium cultivars (Caladium ×hortulanum), including Miss Muffet and Gingerland, produce rugose leaves. The rugosity on these leaves is an intriguing characteristic, often resulting in an increased ornamental value. This study was conducted to understand the mode of inheritance of this trait and to determine its genetic relationship with other foliar characteristics including leaf shape, main vein color, and leaf spotting in caladiums. Sixteen caladium cultivars/breeding lines were crossed and 20 populations were produced; progeny of these populations were phenotyped for rugose leaf as well as leaf shape, main vein color, and leaf spotting. Results showed that a single locus with two alleles controlled the presence or absence of rugose leaves in these populations. The locus was designated as RLF, with the dominant RLF allele for rugose leaves and the recessive allele rlf for nonrugose (flat) leaves. Rugose cultivars Miss Muffet and Gingerland and breeding line UF-317 possessed the heterozygous genotype RLFrlf. Rugose leaf was inherited independently from leaf shape, but linked with the green main vein allele (V g) at the V locus and the leaf spotting allele (S) at the S locus. Three-point analysis of the segregation of the three linked traits in reciprocal crosses between ‘Miss Muffet’ and nonrugose ‘Candidum’ indicated a genetic linkage map with the gene order of S locus locating between the V and the RLF loci. The information obtained from this study will be useful for developing breeding strategies for producing new caladium cultivars with or without rugose leaves, and can facilitate the understanding of the mode of inheritance for rugose leaves in other aroids and other plants.

Free access

Teresa E. Seijo, Natalia A. Peres, and Zhanao Deng

Bacterial blight, caused by Xanthomonas axonopodis pv. dieffenbachiae (Xad), is the most common foliar disease of caladium, an ornamental aroid grown for its colorful foliage. The disease can reduce the marketability of caladiums produced as potted plants and lower the yield of caladiums grown for tuber production. Three bacterial strains were isolated from symptomatic caladiums and identified as Xad using fatty acid analysis, carbon source use, and the sequence of the 16S-23S spacer, and tested for virulence against three susceptible cultivars. Two strains were virulent to all of the cultivars; however, one strain was differentially pathogenic, virulent against two cultivars, but not to the usually highly susceptible ‘Candidum’. In greenhouse inoculation tests of 17 cultivars and one breeding line, four cultivars were ranked as highly susceptible, nine as moderately susceptible, and five as resistant. Ten of these cultivars were also evaluated with natural infection in the field with good agreement between the results of the greenhouse and field evaluations. Cultivars White Queen, Florida Red Ruffles, Florida Sweetheart, Candidum Jr., and Mrs. Arno Nehrling have been identified as resistant to bacterial blight in greenhouse or field evaluations and can potentially be used in future breeding efforts to produce improved cultivars.

Free access

Zhanao Deng, Brent K. Harbaugh, and Natalia A. Peres

Free access

Zhanao Deng, Jinguo Hu, Fahrettin Goktepe, Brady A. Vick, and Brent K. Harbaugh

Cultivated caladiums are valued for their bright colorful leaves and are widely used in containers and landscapes. More than 1500 named cultivars have been introduced during the past 150 years, yet currently only about 100 cultivars are in commercial propagation in Florida. Caladium tubers produced in Florida account for 95% of the world supplies. Loss of caladium germplasm or genetic diversity has been a concern to future improvement of this plant. In addition, the relationship among the available cultivars, particularly those of close resemblance, has been lacking. This study was conducted to assess the genetic variability and relationship in commercial cultivars and species accessions. Fifty-seven major cultivars and 15 caladium species accessions were analyzed using the target region amplification polymorphism marker technique. This marker system does not involve DNA restriction or adaptor linking, but shares the same high throughput and reliability with the amplified fragment length polymorphism system (AFLP). Eight primer combinations amplified 379 scorable DNA fragments among the caladium samples. A high level of polymorphism was detected among the species accessions as well as among cultivars. These markers allowed differentiation of all the cultivars tested, including those hardly distinguishable morphologically. Clustering analysis based on these DNA fingerprints separated the cultivars into five clusters and Caladium lindenii far from other caladium species. The availability of this information will be very valuable for identifying and maintaining the core germplasm resources and will aid in selecting breeding parents for further improvement.

Free access

Fahrettin Goktepe, Zhanao Deng, Brent K. Harbaugh, Teresa Seijo, and Natalia A. Peres

Caladiums, widely used in containers and landscapes as ornamental plants for their bright colorful leaves, are generally forced or grown from tubers. Commercial production of these tubers in central Florida is through dividing “seed” tubers and growing them in fields. Tuber quality is therefore of critical importance to success in container forcing, landscape use, and tuber production. Fusarium tuber rot (Fusarium solani) has been recognized as the most-destructive disease that affects caladium tuber quality. There is anecdotal evidence from growers indicating the existence of resistance in commercial caladium cultivars. To identify and confirm the source of fusarium tuber rot resistance in caladium, F. solani isolates have been collected from rotting tubers grown under different soil conditions and from different locations. The pathogenecity of these isolates has been tested through artificial inoculation of fresh harvested and/or stored tubers, and a number of highly virulent isolates have been identified. These isolates have been used to refine inoculation and disease evaluation techniques. Two techniques, spraying a conidial suspension onto fresh cut surfaces and inserting Fusarium-infested carnation leaf segments into artificial wounds, have proven to yield consistent resistance/susceptibility ratings among cultivars of known difference in resistance to fusarium tuber rot. Appropriate incubation temperatures and humidity seem to be very critical for disease development and evaluation. The two techniques have been used to evaluate 35 cultivars. Several cultivars, including `Candidum', showed a high level of resistance to fusarium tuber rot, and may be good breeding parent for developing new resistant cultivars.

Free access

Zhan'ao Deng, Fred G. Gmitter Jr., Shunyuan Xiao, and Shu Huang

Citrus tristiza virus (CTV) is the most-significant viral pathogen of citrus in the world. Rapid decline of trees on sour orange and stem pitting of grapefruit and sweet orange, two diseases induced by CTV, severely jeopardize citrus production worldwide. It is recognized that all future rootstocks should be resistant to this virus, and scion resistance to stem pitting stains is desirable. To facilitate introgression of the CTV resistance gene from Poncirus trifoliata and development of CTV-resistant varieties in citrus, gene mapping projects have been initiated and more than a dozen RAPD markers have been identified with tight linkage to the resistance gene. As part of our efforts to use marker-assisted selection with a large number of crosses, and ultimately to accomplish map-based cloning of the CTV resistance gene, we have been converting the most tightly linked RAPD markers into SCAR (sequence characterized amplified region) markers by cloning, sequencing the marker fragments, and designing locus-specific primers. One codominant and several dominant SCARs have been developed thus far. The updated progress and utilization of these SCARs in marker-assisted selection and possibly in characterization of a BAC library will be presented and discussed.

Free access

Zhanao Deng, Brent K. Harbaugh, Rick O. Kelly, Teresa Seijo, and Robert J. McGovern

Caladiums (Caladium ×hortulanum) are popular ornamental plants widely grown for their bright colorful leaves. Pythium root rot, caused by Pythium myriotylum, is one of the few soil-borne diseases in caladium that dramatically reduces plant growth, aesthetic value, and tuber yield. Information on the reaction of caladium cultivars to P. myriotylum is not available, but would be valuable for integrated control of this disease and for breeding new resistant cultivars. Three Pythium isolates obtained from decaying roots of plants collected from a field production site and two greenhouses were evaluated for pathogenicity and potential use in experiments to screen commercial caladium cultivars for resistance. All three isolates were found to be highly virulent; they were able to cause obvious root rotting within 3 to 5 days and severe root rotting and leaf losses on susceptible cultivars within 10 days after inoculation. Nineteen major commercial cultivars were evaluated for their resistance to these isolates. Fifteen of the cultivars were susceptible or highly susceptible to Pythium infection. Four widely grown cultivars, `Candidum', `Candidum Jr.', `Frieda Hemple', and `White Christmas', were found to have a moderate level of resistance (partial resistance) to pythium root rot. Pythium infection also caused leaf discoloration, epinasty, wilting, and collapse. Regression analyses revealed a linear relationship between the root rot and leaf loss severity on Pythium-inoculated plants.

Free access

Courtney A. Weber, Gloria A. Moore, Zhanao Deng, and Fred G. Gmitter Jr.

Mapping quantitative trait loci (QTL) associated with freeze tolerance was accomplished using a Citrus grandis (L.) Osb. × Poncirus trifoliata (L.) Raf. F1 pseudo-testcross population. A progeny population of 442 plants was acclimated and exposed to temperatures of -9 °C and -15 °C in two separate freeze tests. A subpopulation of 99 progeny was genotyped for random amplified polymorphic DNA (RAPD), cleaved amplified polymorphic sequence (CAPS), sequence characterized amplified region (SCAR), and sequence tagged site (STS) markers to produce a linkage map for each parent. Potential QTL were identified by interval mapping, and their validity was corroborated with results from means comparison (t test), one-way analysis of variance (F test), and bulked segregant analysis (BSA). Multiple analytical methods provided evidence supporting putative QTL and decreased the probability of missing significant QTL associated with freeze tolerance. QTL with a large effect on freeze tolerance were located on both the Citrus and Poncirus linkage maps. In addition, clusters of markers with significantly different means between marker present and absent classes indicating minor QTL that contribute smaller effects on the level of tolerance were found on the linkage maps of both species.