Search Results

You are looking at 41 - 43 of 43 items for

  • Author or Editor: Wei Li x
  • Refine by Access: All x
Clear All Modify Search
Open access

Herbaud P.F. Zohoungbogbo, Enoch G. Achigan-Dako, Judith Honfoga, Shih-Wen Lin, Tsung-Han Lin, Yen-Wei Wang, Yuan-Li Chan, Peter Hanson, and Derek W. Barchenger

Habanero (Capsicum chinense Jacq.) is widely grown and consumed in West and Central African countries, and viral diseases represent an important production challenge. Diagnosis of the viral species affecting habanero productivity in Benin is limited, and understanding this will enable more efficient host resistance breeding. During 2019 and 2020, we characterized the incidence and severity of the viral diseases infecting nine promising habanero breeding lines and one commercial hybrid check under open field conditions in Benin. The horticultural performance, including yield and yield component traits of the entries, was determined during the 2 years of the experiment. A randomized complete block design was used with three replications, each with 24 plants. Data were recorded on days to 50% flowering and 50% fruit maturity, yield and on the yield components of fruit weight (g), fruit length (cm), and fruit width (mm), as well as disease incidence and severity. In total, 35 leaf samples were collected for viral diagnosis among habanero breeding lines. We found that Pepper veinal mottle virus (PVMV; Potyvirus) was the overwhelmingly predominant virus in our trials, with an 80% incidence; however, we found frequent coinfection of PVMV with Cucumber mosaic virus (CMV, Cucumovirus), Polerovirus, and, to a lesser extent, Chili veinal mottle virus (ChiVMV; Potyvirus). The mean disease incidence across all entries was 60%. AVPP1932 and PBC 2010 had the lowest disease incidence (35% and 43%, respectively), whereas AVPP1929 had the highest (86%) disease incidence. The F1 hybrid check Afadja had the overall highest yield, with 30 t⋅ha−1, followed by AVPP1932, with 19 t⋅ha−1, both in 2019. There was a negative correlation between disease incidence and total yield (r = −0.44; P < 0.001), supporting previous studies indicating that viral diseases are major production constraints for habanero in West Africa. This study provides insight regarding the need to improve habanero for resistance to aphid-transmitted viruses and develop integrated pest management strategies to limit losses in Benin.

Free access

Yun-Peng Zhong, Zhi Li, Dan-Feng Bai, Xiu-Juan Qi, Jin-Yong Chen, Cui-Guo Wei, Miao-Miao Lin, and Jin-Bao Fang

To select resistant germplasm resources and understand the growth and physiological responses of kiwifruit (Actinidia sp.) to drought stress, five species, Actinidia macrosperma (Acma), Actinidia longicarpa (Aclo), Actinidia deliciosa (Acde), Actinidia hemsleyana (Ache), and Actinidia valvata (Acva), were assessed under tissue culture conditions. Rootless seedlings of five species were cultured in a medium containing polyethylene glycol [PEG (formula weight 8000)] to induce drought stress (0%, 5%, 10%, 15%, and 20%). After a 30-day culture, three growth indices [fresh weight (FW), plant height (PLH), and leaf number (LN)] and six physiological indices were determined, and the drought damage index (DDI) was determined. The DDIs of five species increased, and three growth indices decreased with increasing PEG concentrations. The following changes were observed under 20% PEG treatment conditions: superoxide dismutase (SOD) activities increased significantly in Acma, Aclo, and Ache specimens; peroxidase (POX) activities remained stable in Acde, Ache, and Acva specimens; and catalase (CAT) activities increased sharply in Acma and Acva. Furthermore, the results indicated that soluble sugar (SS) content increased slightly in Acma, Aclo, Acde, and Ache but it decreased in Acva specimens. Proline (PRO) content increased significantly in Acma and Acva, and malondialdehyde (MDA) contents tended to increase under drought stress in all five species. Principal component analysis (PCA) results indicated that the order of drought tolerance in the five genotypes examined in this study under tissue culture conditions was as follows: Acma > Acva > Acde > Aclo > Ache. Therefore, we concluded that Acma and Acva are more resilient germplasm resources that represent promising kiwifruit-breeding materials. Furthermore, tolerance to drought stress in these species should be further investigated under orchard conditions.

Open access

Tao Dong, Fang-cheng Bi, Yong-hong Huang, Wei-di He, Gui-ming Deng, Hui-jun Gao, Ou Sheng, Chun-yu Li, Qiao-song Yang, Gan-jun Yi, and Chun-hua Hu

An efficient biolistic transformation system of banana combined with a liquid medium selection system was developed during this study. An embryogenic cell suspension (ECS) of Musa acuminata cv. Baxi (AAA) was bombarded with a particle delivery system. After 7 days of restoring culture in liquid M2 medium, embryogenic cells were transferred to a liquid selection M2 medium supplemented with 10 μg/mL hygromycin for resistance screening. The untransformed cell clusters were inhibited or killed, and a small number of transformants proliferated in the liquid selection medium. After the 0th, first, second, and third generation of antibiotic screening, there were 0, 65, 212, and 320, respectively, vitality-resistant buds obtained from a 0.5-mL packed cell volume (PCV) of embryogenic cell suspension. The β-glucuronidase (GUS) staining, polymerase chain reaction (PCR) analysis, and Southern blot hybridization results all demonstrated a 100% positive rate of regenerated resistant seedlings. Interestingly, the number of buds obtained through third-generation screening was almost equal to that obtained from the original ECS in M2 medium without antibiotics. These results suggested that the liquid medium selection system facilitated the proliferation of a positive transgenic ECS, which significantly improved the regeneration rate of transformants. This protocol is suitable for the genetic transformation of all banana genotypes and is highly advantageous to varieties with low callusing potential.