Search Results

You are looking at 41 - 50 of 79 items for

  • Author or Editor: Genhua Niu x
  • Refine by Access: All x
Clear All Modify Search
Free access

Genhua Niu, Royal Heins, Arthur Cameron, and William Carlson

The influence of daily light integral (DLI) before vernalization and vernalization temperature and duration on growth and flower development was determined for seed-propagated perennials Aquilegia ×hybrida Sims `Remembrance', Coreopsis grandiflora Hogg ex Sweet `Sunray', and Lavandula angustifolia Mill. `Hidcote Blue'. Seedlings were grown under two DLIs (4 or 14 mol·m-2·d-l) for 5 weeks before being vernalized at -2.5, 0, 2.5, or 5 °C for 2,4,5, or 8 weeks. `Remembrance' and `Sunray' plants were vernalized in the dark, while `Hidcote Blue' plants were vernalized in light at 5 to 10 μmol·m-2·s-l for 9 hourslday. After vernalization, plants were forced under a 16-h photoperiod in the greenhouse at 20±2 °C. `Remembrance' plants flowered uniformly when vernalized at 0 to 2.5 °C for 2 weeks or longer, and flower number, plant height, time to visible bud or to flower were generally not influenced by vernalization temperature or duration. No `Sunray' plants flowered without vernalization, and only a low percentage flowered with 4-week vernalization. Compared with low DLI, a 14 mol·m-2·d-1 before vernalization delayed flowering by 7 to 20 days in `Remembrance', but there were no substantial differences in flowering characteristics of `Sunray'. `Hidcote Blue' plants were best vernalized in the light at 5 °C for 8 weeks to obtain rapid and uniform flowering and the highest number of inflorescences. Flowering and survival percentages of `Hidcote Blue' were much lower for plants at 14 mol·m-2·d-l DLI compared to 4 mol·m-2·d-1.

Free access

Yoshiaki Kitaya, Genhua Niu, Toyoki Kozai, and Maki Ohashi

Lettuce (Lactuca sativa L. cv. Summer-green) plug transplants were grown for 3 weeks under 16 combinations of four levels (100, 150, 200, and 300 μmol·m-2·s-1) of photosynthetic photon flux (PPF), two photoperiods (16 and 24 h), and two levels of CO2 (400 and 800 μmol·mol-1) in growth chambers maintained at an air temperature of 20 ±2 °C. As PPF increased, dry mass (DM), percent DM, and leaf number increased, while ratio of shoot to root dry mass (S/R), ratio of leaf length to leaf width (LL/LW), specific leaf area, and hypocotyl length decreased. At the same PPF, DM was increased by 25% to 100% and 10% to 100% with extended photoperiod and elevated CO2 concentration, respectively. Dry mass, percent DM, and leaf number increased linearly with daily light integral (DLI, the product of PPF and photoperiod), while S/R, specific leaf area, LL/LW and hypocotyl length decreased as DLI increased under each CO2 concentration. Hypocotyl length was influenced by PPF and photoperiod, but not by CO2 concentration. Leaf morphology, which can be reflected by LL/LW, was substantially influenced by PPF at 100 to 200 μmol·m-2·s-1, but not at 200 to 300 μmol·m-2·s-1. At the same DLI, the longer photoperiod promoted growth under the low CO2 concentration, but not under the high CO2 concentration. Longer photoperiod and/or higher CO2 concentration compensated for a low PPF.

Open access

Qiang Liu, Youping Sun, James Altland, and Genhua Niu

Tatarian dogwood (Cornus alba) is an ornamental shrub with white fruits, creamy-white flowers, and red stems in fall through late winter and is widely used in residential landscape, public parks, and botanical gardens. Two greenhouse experiments were conducted to characterize the survival, morphological, aesthetic, and physiological responses of tatarian dogwood seedlings to salinity and drought stresses. In Expt. 1, tatarian dogwood seedlings grown in three soilless growing substrates (Metro-Mix 360, 560, and 902) were irrigated with a nutrient solution at an electrical conductivity (EC) of 1.2 dS·m−1 (control) or saline solution (by adding calculated amount of sodium chloride and calcium chloride) at an EC of 5.0 or 10.0 dS·m−1 once per week for 8 weeks. Results showed that substrate did not influence the growth of tatarian dogwood seedling. All plants irrigated with saline solutions at an EC of 10.0 dS·m−1 died, whereas those irrigated with saline solutions at an EC of 5.0 dS·m−1 exhibited severe foliar salt damage with an average visual score of 1.0 (on a scale of 0 to 5, with 0 = dead and 5 = excellent without foliar salt damage). Compared with the control, saline solutions at an EC of 5.0 dS·m−1 reduced plant height and shoot dry weight (DW) by 50.8% and 55.2%, respectively. Relative chlorophyll content [soil plant analysis development (SPAD) reading], chlorophyll fluorescence (Fv/Fm), and net photosynthesis rate (Pn) also decreased when plants were irrigated with saline solutions at an EC of 5.0 and 10.0 dS·m−1. Leaf sodium (Na+) concentration of tatarian dogwood seedlings irrigated with saline solutions at an EC of 5.0 and 10.0 dS·m−1 increased 11 and 40 times, respectively, compared with the control, whereas chloride (Cl-) concentration increased 25 and 33 times, respectively. In Expt. 2, tatarian dogwood seedlings were irrigated at a substrate volumetric water contents (volume of water/volume of substrate, VWC) of 15%, 20%, 25%, 30%, 35%, 40%, or 45% using a sensor-based automated irrigation system for 60 days. Results showed that drought stress decreased plant growth of tatarian dogwood seedlings with a reduction of 71%, 85%, and 87% in plant height, leaf area, and shoot DW, respectively, when VWC decreased from 45% to 15%, but all plants survived at all VWC treatments. Significant reductions of photosynthesis (Pn), stomatal conductance (g S), transpiration rate (E), and water potential were also found in plants at a VWC of 15%, compared with other VWCs. However, SPAD readings and Fv/Fm of tatarian dogwood seedlings were similar among the VWCs. In conclusion, tatarian dogwood seedlings were sensitive to the salinity levels tested in this study but could survive at all tested substrate volumetric water contents and exhibited resistance to drought conditions.

Full access

Raul I. Cabrera, James E. Altland, and Genhua Niu

Scarcity and competition for good quality and potable water resources are limiting their use for urban landscape irrigation, with several nontraditional sources being potentially available for these activities. Some of these alternative sources include rainwater, stormwater, brackish aquifer water, municipal reclaimed water (MRW), air-conditioning (A/C) condensates, and residential graywater. Knowledge on their inherent chemical profile and properties, and associated regional and temporal variability, is needed to assess their irrigation quality and potential short- and long-term effects on landscape plants and soils and to implement best management practices that successfully deal with their quality issues. The primary challenges with the use of these sources are largely associated with high concentrations of total salts and undesirable specific ions [sodium (Na), chloride (Cl), boron (B), and bicarbonate (HCO3 ) alkalinity]. Although the impact of these alternative water sources has been largely devoted to human health, plant growth and aesthetic quality, and soil physicochemical properties, there is emergent interest in evaluating their effects on soil biological properties and in natural ecosystems neighboring the urban areas where they are applied.

Free access

Genhua Niu, Denise S. Rodriguez, and Yin-Tung Wang

The effect of drought on the growth and gas exchange of six bedding plant species—agastache [Agastache urticifolia (Benth.) O. Kuntze `Honeybee Blue'], dusty miller (Cineraria maritima L. `Silverdusty'), petunia (Petunia ×hybrida `Wave Purple'), plumbago (Plumbago auriculata Lam. `Escapade'), ornamental pepper (Capsicum annuum L. `Black Pearl'), and vinca [Catharanthus roseus (L.) G. Don `Titan']—was quantified under greenhouse conditions. Seeds were sown in January and seedlings were grown in the greenhouse until 18 Apr., when two irrigation treatments—drought (D, ≈18% volumetric moisture content at reirrigation) and control (C, ≈25% volumetric moisture content at reirrigation)—were initiated. Leaf net photosynthetic rate (Pn), stomatal conductance (gs), and transpiration (E) were determined in response to a range of substrate moisture content (from ≈5% to 30% by volume) and temperature (from 20 °C to 40 °C). Dry weight of agastache, ornamental pepper, and vinca was unaffected by drought, whereas that of other species was reduced. Leaf area of plumbago and height of plumbago and vinca were reduced by drought. As substrate moisture content decreased from 25% to 10%, Pn, E, and gs decreased linearly in all species except petunia and plumbago. Leaf net photosynthetic rate of all species declined as leaf temperature increased from 20 °C to 40 °C. In contrast, E of all species, except petunia, increased as temperature increased. Transpiration rate of petunia increased as temperature increased from 20 °C to 30 °C, and then decreased between 30 °C and 40 °C. Although petunia had the highest Pn among the tested species, its Pn and gs declined more rapidly compared with the other species as temperature increased from 20 °C to 40 °C or as substrate moisture content decreased, indicating that petunia was most sensitive to high temperature and drought.

Free access

Haijie Dou, Genhua Niu, Mengmeng Gu, and Joseph G. Masabni

Consumption of basil (Ocimum basilicum) has been increasing worldwide in recent years because of its unique aromatic flavor and relatively high concentration of phenolics. To achieve a stable and reliable supply of basil, more growers are turning to indoor controlled-environment production with artificial lighting due to its high environmental controllability and sustainability. However, electricity cost for lighting is a major limiting factor to the commercial application of indoor vertical farming, and little information is available on the minimum light requirement to produce uniform and high-quality sweet basil. To determine the optimal daily light integral (DLI) for sweet basil production in indoor vertical farming, this study investigated the effects of five DLIs, namely, 9.3, 11.5, 12.9, 16.5, and 17.8 mol·m−2·d−1 on basil growth and quality. ‘Improved Genovese Compact’ sweet basil was treated with five DLIs provided by white fluorescent lamps (FLs) for 21 d after germination, and gas exchange rate, growth, yield, and nutritional quality of basil plants were measured to evaluate the effects of the different DLIs on basil growth and quality. Results indicated that basil plants grown under higher DLIs of 12.9, 16.5, or 17.8 mol·m−2·d−1 had higher net photosynthesis, transpiration, and stomatal conductance (g S), compared with those under lower DLIs of 9.3 and 11.5 mol·m−2·d−1. High DLIs resulted in lower chlorophyll (Chl) a+b concentration per leaf fresh weight (FW), higher Chl a/b ratios, and larger and thicker leaves of basil plants. The shoot FW under DLIs of 12.9, 16.5, and 17.8 mol·m−2·d−1 was 54.2%, 78.6%, and 77.9%, respectively, higher than that at a DLI of 9.3 mol·m−2·d−1. In addition, higher DLIs led to higher soluble sugar percent and dry matter percent than lower DLIs. The amounts of total anthocyanin, phenolics, and flavonoids per plant of sweet basil were also positively correlated to DLIs, and antioxidant capacity at a DLI of 17.8 mol·m−2·d−1 was 73% higher than that at a DLI of 9.3 mol·m−2·d−1. Combining the results of growth, yield, and nutritional quality of sweet basil, we suggest a DLI of 12.9 mol·m−2·d−1 for sweet basil commercial production in indoor vertical farming to minimize the energy cost while maintaining a high yield and nutritional quality.

Full access

Joseph Masabni, Youping Sun, Genhua Niu, and Priscilla Del Valle

Southern U.S. states such as Texas experience high temperatures and intense solar radiation during the summer production season. Use of shadecloth is common in Spain and other Mediterranean countries and is becoming popular with homeowners or small-acreage farmers in Texas. Little information is available on the applicability of using shadecloth on tomato (Solanum lycopersicum) and chili pepper (Capsicum annuum) in the warm climate of Texas. The effects of two shade nets differing in shading intensity on growth, chlorophyll fluorescence, and photosynthesis of ‘Celebrity’ tomato and ‘Sweet Banana’ chili pepper was investigated from May to Aug. 2014. Plants were grown in 50% shade, 70% shade, or full sun. Compared with the unshaded control, tomato grown in 50% shade had similar yield and shoot fresh and dry weight and less photochemical stress. The 50% shade reduced number and weight of unmarketable tomato fruit. Similar results were obtained with chili pepper except for lower numbers of marketable fruit. The 70% shade significantly reduced yield parameters of both tomato and chili pepper. Both 50% and 70% shadecloth reduced leaf temperatures of tomato and chili pepper with variable results in June and July. Growth index [(height + width 1 + width 2) ÷ 3] of tomato and chili pepper was the highest with 50% shade, the lowest with full sun, and intermediate with 70% shade. The maximum net photosynthetic rates (Pn) of tomato determined from a Pn to light response curve supported the results on growth and yield. However, the maximum Pn of chili pepper was higher in full sun treatment compared with 50% or 70% shade. The latter two were almost identical. This one growing season study indicated that shading at 50% benefits tomato and chili pepper production in west Texas by reducing heat stress; however, a shading percentage below 50% may be better.

Free access

Genhua Niu, Royal D. Heins, Arthur Cameron, and Will Carlson

The effects of temperature on flower size and number of flower buds of Campanula carpatica Jacq. 'Blue Clips', 'Deep Blue Clips', and Campanula 'Birch Hybrid' were investigated in four temperature and light-transfer experiments. In year 1, 'Blue Clips' and 'Birch Hybrid' plants were grown initially at 20 °C and then transferred at visible flower bud (VB) to 14, 17, 20, 23, or 26 °C until flower (Expt. 1). In Expt. 2, 'Blue Clips' and 'Birch Hybrid' plants were transferred from 14 to 26 °C or from 26 to 14 °C at various intervals after flower induction. Flower size of both species was negatively correlated with average daily temperature (ADT) after VB; flowers on plants grown at 14 °C were 35% larger than those on plants grown at 26 °C. In contrast, temperature before VB had only a small effect on final flower size in both species, although flower diameter of 'Birch Hybrid' plants grown at constant 26 °C was 20% smaller than that of the plants grown initially at 20°C and then transferred to VB to 26 °C. For both species, the longer the exposure to high temperature after VB, the smaller the flowers. Number of flower buds at flower in 'Birch Hybrid' decreased as ADT after VB increased. In year 2, 'Deep Blue Clips' plants were grown at constant 20 °C under high or low daily light integral (DLI, 17 or 5.7 mol·m-2·d-1) until VB, and then transferred to 14, 17, 20, 23, or 26 °C under high or low DLI (Expt. 3). In Expt. 4, 'Deep Blue Clips' plants were grown at 14, 17, 20, 23, or 26 °C until VB, and then transferred to constant 20 °C under high or low DLI until flower. Flower size (petal length) was negatively correlated with ADT both before and after VB, while flower bud number was negatively correlated with the ADT only after VB, regardless of DLI. In both experiments, petal length decreased by 0.3 to 0.5 mm per 1 °C increase in ADT before or after VB. Flowers were larger and more numerous under high than under low DLIs after VB, regardless of the DLI before VB.

Free access

Min Lin, Terri W. Starman, Yin-Tung Wang, and Genhua Niu

The flowering time and flower quality of three hybrid Dendrobium nobile cultivars in relation to light intensity during cooling and duration of vernalization were studied in the first experiment. Mature Dendrobium Red Emperor ‘Prince’, Den. Sea Mary ‘Snow King’, and Den. Love Memory ‘Fizz’ plants were vernalized at 10 °C under 300 to 350 μmol·m−2·s−1 photosynthetic photon flux (PPF) (12-h photoperiod) or darkness, each with four cooling durations (2, 4, 6, or 8 weeks). Plants were forced in a greenhouse after vernalization. At least 4 weeks of 10 °C cooling in light was needed for complete flower initiation of Den. Red Emperor ‘Prince’, whereas Den. Sea Mary ‘Snow King’ and Den. Love Memory ‘Fizz’ only needed 2 weeks of 10 °C cooling regardless of light. For all three cultivars, darkness during vernalization slightly delayed flowering and resulted in fewer but larger flowers. Longer cooling duration delayed flowering, decreased flower longevity, and produced more and larger flowers. In a second experiment, Den. Love Memory ‘Fizz’ plants were vernalized at 15 °C for 4 weeks under a 12-h photoperiod and PPF of 0, 50, 100, or 200 μmol·m−2·s−1. Compared with 200 μmol·m−2·s−1, low PPF at 50 or 100 μmol·m−2·s−1 did not affect flowering time or flower qualities; however, darkness delayed flowering and reduced flower qualities except flower diameter.

Full access

Zhengnan Yan, Dongxian He, Genhua Niu, Qing Zhou, and Yinghua Qu

Few researchers examined different red light amounts added in white light-emitting diodes (LEDs) with varied daily light integrals (DLIs) for hydroponic lettuce (Lactuca sativa L.). In this study, effects of DLI and LED light quality (LQ) on growth, nutritional quality, and energy use efficiency of hydroponic lettuce were investigated in a plant factory with artificial lighting (PFAL). Hydroponic lettuce plants (cv. Ziwei) were grown for 20 days under 20 combinations of five levels of DLIs at 5.04, 7.56, 10.08, 12.60, and 15.12 mol·m−2·d−1 and four LQs: two kinds of white LEDs with red to blue ratio (R:B ratio) of 0.9 and 1.8, and two white LEDs plus red chips with R:B ratio of 2.7 and 3.6, respectively. Results showed that leaf and root weights and power consumption based on fresh and dry weights increased linearly with increasing DLI, and light and electrical energy use efficiency (LUE and EUE) decreased linearly as DLI increased. However, no statistically significant differences were found in leaf fresh and dry weights and nitrate and vitamin C contents between DLI at 12.60 and 15.12 mol·m−2·d−1. Also, no effects of LQ on leaf dry weight of hydroponic lettuce were observed at a DLI of 5.04 mol·m−2·d−1. White plus red LEDs with an R:B ratio of 2.7 resulted in higher leaf fresh weight than the two white LEDs. LUE increased by more than 20% when red light fraction increased from 24.2% to 48.6%. In summary, white plus red LEDs with an R:B ratio of 2.7 at DLI at 12.60 mol·m−2·d−1 were recommended for commercial hydroponic lettuce (cv. Ziwei) production in PFALs.