Search Results

You are looking at 41 - 49 of 49 items for

  • Author or Editor: Fumiomi Takeda x
  • Refine by Access: All x
Clear All Modify Search
Free access

Fumiomi Takeda, Gene Lester, Craig Chandler, Penny Perkins-Veazie, and Ronald Prior

Fresh strawberries (Fragaria ×ananassa Duch) are readily available throughout the year with several new cultivars being successfully grown in diverse environmental conditions (e.g., field and greenhouse). Consumption of strawberries with higher nutritive values and antioxidant activity may contribute to improved human wellness. Phytonutrient contents and antioxidant activity was measured as oxygen radical absorbance capacity (ORAC) were assayed in berries (`Camarosa', `Diamante', and `Gaviota') sampled in January, February to March, and April to May from fields in Plant City, Fla., and Oxnard, Calif., and from a greenhouse in Kearneysville, WV. Strawberry cultivars varied in skin color, soluble solids, total phenolics, and anthocyanins, ascorbic acid, folic acid, and ORAC activity. Response to environment was cultivar dependent. All phytonutrient constituents were lower in `Diamante' berries compared to `Camarosa' and `Gaviota'. For all cultivars, berry ORAC activity declined as TSS increased, and ORAC activity was coincident with phenolic content. ORAC activity in berries fruit harvested from plants grown in a temperature-controlled greenhouse did not change during the January to May sampling period. For `Gaviota', ORAC activity in greenhouse-produced berries was the same as that of field-produced berries. Whereas greenhouse vs. field-gown `Camarosa' and `Diamante' berries ORAC was higher and lower respectively. These findings demonstrate that the environmental conditions in greenhouses in Kearneysville, W.Va., from winter to spring are adequate for `Camarosa' and `Gaviota' color development, but not for `Diamante' strawberries. Of the three cultivars, only `Camarosa' was highly productive (1.2 kg berries per plant), even in the greenhouse. Berries were high in ascorbic acid, folic acid, phenolic acid, anthocyanins, and ORAC activity.

Full access

Fumiomi Takeda, Gerard Krewer, Changying Li, Daniel MacLean, and James W. Olmstead

Northern highbush (NH) blueberry (Vaccinium corymbosum) and southern highbush (SH) blueberry (V. corymbosum hybrids) have fruit that vary in firmness. The SH fruit is mostly hand harvested for the fresh market. Hand harvesting is labor-intensive requiring more than 500 hours/acre. Rabbiteye blueberry (V. virgatum) tends to have firmer fruit skin than that of NH blueberry and has been mostly machine harvested for the processing industry. Sparkleberry (V. arboreum) has very firm fruit. With the challenges of labor availability, efforts are under way to produce more marketable fruit using machine harvesting. This could require changing the design of harvesting machine and plant architecture, and the development of cultivars with fruit that will bruise less after impact with hard surfaces of machines. The objectives of this study were to determine the fruit quality of machine-harvested SH blueberry, analyze the effect of drop height and padding the contact surface on fruit quality, investigate the effect of crown restriction on ground loss, and determine the effect of plant size on machine harvestability. The fruit of ‘Farthing’, ‘Scintilla’, ‘Sweetcrisp’, and several selections were either hand harvested or machine harvested and assessed during postharvest storage for bruise damage and softening. Machine harvesting contributed to bruise damage in the fruit and softening in storage. The fruit of firm-textured SH blueberry (‘Farthing’, ‘Sweetcrisp’, and selection FL 05-528) was firmer than that of ‘Scintilla’ after 1 week in cold storage. Fruit drop tests from a height of 20 and 40 inches on a plastic surface showed that ‘Scintilla’ was more susceptible to bruising than that of firm-textured ‘Farthing’ and ‘Sweetcrisp’. When the contact surface was cushioned with a foam sheet, bruise incidence was significantly reduced in all SH blueberry used in the study. Also, the fruit dropped 40 inches developed more bruise damage than those dropped 20 inches. Ground loss during machine harvesting was reduced from 24% to 17% by modifying the rabbiteye blueberry plant architecture. Further modifications to harvesting machines and plant architecture are necessary to improve the quality of machine-harvested SH and rabbiteye blueberry fruit and the overall efficiency of blueberry (Vaccinium species and hybrids) harvesting machines.

Free access

Paul R. Adler, Jayson K. Harper, Fumiomi Takeda, Edward M. Wade, and Steven T. Summerfelt

Open access

Abigail R. Debner, Harlene Hatterman-Valenti, and Fumiomi Takeda

Outdoor production of floricane-fruiting (FF) blackberry (Rubus subgenus Rubus) is problematic in the Northern Great Plains region of the United States because cane injury and plant death will occur from exposure to temperatures −15 °C and colder. An annual FF blackberry production system using hardwood floricane cuttings would overcome some of the existing limitations of traditional production methods. Several experiments were performed to induce adventitious root formation from one-node hardwood floricane blackberry cuttings taken in winter for the purpose of subsequent growth of a floral shoot. One-node hardwood cuttings of multiple blackberry cultivars (Apache, Arapaho, Kiowa, Osage, Ouachita, Siskiyou, and Triple Crown) were evaluated for rooting potential with and without auxin treatments. Root formation was virtually nonexistent for ‘Apache’, ‘Kiowa’, and ‘Triple Crown’ regardless of the auxin treatment. In general, lower auxin concentrations and the powder formulation produced more roots and had higher root ratings. However, rooting success of cuttings and plant development was low regardless of the rooting method used. Adventitious root production of one-node dormant hardwood FF blackberry cuttings for use in an annual production system had low success regardless of the cultivar, auxin application, rate, and formulation. The variable propagation success rates using single-node hardwood cuttings from ‘Apache’, ‘Arapaho’, ‘Kiowa’, ‘Osage’, ‘Ouachita’, ‘Siskiyou’, and ‘Triple Crown’ plants grown in containers in North Dakota suggested insufficient rooting success for the recommendation of this practice. Additionally, the results suggested these cultivars are not suitable using this method for an annual production system or as a means for large-scale propagation. Although this approach to developing plants from cuttings is of great interest, without a more effective FF blackberry cutting rooting method that can progress through fruit production, an annual blackberry production system in the Northern Great Plains region of the United States is unlikely.

Full access

Fumiomi Takeda, Kathy Demchak, Michele R. Warmund, David T. Handley, Rebecca Grube, and Charles Feldhake

Winter injury has limited the expansion of commercial blackberry (Genus Rubus, subgenus Rubus) production into more northern latitudes in central and eastern United States. Rowcover (RC) was applied over trailing ‘Boysenberry’ and ‘Siskiyou’ and erect, thornless ‘Triple Crown’ and ‘Apache’ blackberries at Kearneysville, WV (lat. 39.5°N, USDA Plant Hardiness Zone 6b) from 2004 to 2007. The daily minimum temperatures under RC were as much as 5 °F to 10 °F higher at nights after sunny days, but were similar during nights after overcast days. On sunny days, daily maximum temperatures under RC were as much as 28 °F higher than in the open. Under RC, humidity rose more quickly and remained higher during the day than in the open, but was slightly lower at night. Mean vapor pressure deficit in late December, January, February, and early March was 100 to 250 kPa higher under RC than in the open. RC treatment significantly reduced winter injury and increased yield in ‘Siskiyou’ blackberry plants. The winter protection techniques described here would provide substantial benefits for growing blackberries in more northern areas where winter injury frequently causes crop failure.

Full access

Fumiomi Takeda, Gerard Krewer, Elvin L. Andrews, Benjamin Mullinix Jr, and Donald L. Peterson

Mechanical harvesting systems for processed blueberries (Vaccinium spp.) are available. However, low harvest efficiency and high fruit damage have limited the use of mechanical harvesters for picking blueberries for fresh market to specific cultivars under good weather conditions. New harvesting technology for fresh-market blueberries is needed. The V45 harvester was developed by the U.S. Department of Agriculture in 1994 to harvest fresh-market-quality northern highbush (V. corymbosum) blueberries in Michigan. The current study was performed in Georgia to evaluate the V45 harvester on specially pruned rabbiteye blueberry [V. virgatum (syn. V. ashei)] and southern highbush blueberry (V. darrowi × V. corymbosum) and included analysis of harvest efficiency and fruit quality (percent blue fruit, percent bloom, percent split skin, and internal bruise damage). Six-year-old, 6- to 8-ft-tall ‘Brightwell’ and ‘Powderblue’ rabbiteye blueberry plants were winter pruned to remove vertically growing and overarching canes in the center of the bush in Jan. 2004 and Feb. 2005 respectively. Three-year-old, 3- to 5-ft-tall ‘FL 86-19’ and ‘Star’ southern highbush blueberry plants were similarly pruned in summer (June 2004) or in winter (Feb. 2005). Pruning removed an estimated 30% to 50% of the canopy and opened the middle, resulting in V-shaped plants in both rabbiteye and southern highbush blueberries. Yield of winter-pruned ‘Brightwell’ rabbiteye blueberry was lower compared with unpruned plants during both years, but winter-pruned ‘Powderblue’ rabbiteye blueberry plants produced as much as unpruned plants in 2005. In ‘FL 86-19’ southern highbush blueberry, plants that were summer pruned in June 2004 produced as much as unpruned plants in 2005, but plants that were winter pruned in Feb. 2005 had lower yields than unpruned plants in 2005. The V45 harvester caused little cane damage on pruned blueberry plants. In rabbiteye blueberries, internal fruit damage and skin splitting was less in V45-harvested fruit than in fruit harvested by a sway harvester and nearly that of hand-harvested fruit. However, in ‘FL 86-19’ southern highbush blueberry, the V45 harvester detached a lower percentage of blue fruit and excessive amounts of immature and stemmed fruit. These findings suggest that the V45 harvester has the potential to harvest some rabbiteye blueberry cultivars mechanically with fruit quality approaching that of hand-harvested fruit.

Free access

Barbara L. Goulart, Philip E. Hammer, Kathleen B. Evensen, Wojciech Janisiewicz, and Fumiomi Takeda

The effects of preharvest applications of pyrrolnitrin (a biologically derived fungicide) on postharvest longevity of `Bristol' black raspberry (Rubus occidentals L.) and `Heritage' red raspberry [R. idaeus L. var. strigosus (Michx.) Maxim] were evaluated at two storage temperatures. Preharvest fungicide treatments were 200 mg pyrrolnitrin/liter, a standard fungicide treatment (captan + benomyl or iprodione) or a distilled water control applied 1 day before first harvest. Black raspberries were stored at 18 or 0 ± lC in air or 20% CO2. Red raspberries were stored at the same temperatures in air only. Pyrrolnitrin-treated berries often had less gray mold (Botrytis cinerea Pers. ex Fr.) in storage than the control but more than berries treated with the standard fungicides. Storage in a modified atmosphere of 20% CO2 greatly improved postharvest quality of black raspberries at both storage temperatures by reducing gray mold development. The combination of standard fungicide or pyrrolnitrin, high CO2, and low temperature resulted in more than 2 weeks of storage with less than 5% disease on black raspberries; however, discoloration limited marketability after≈ 8 days under these conditions. Chemical names used: 3-chloro-4-(2'-nitro-3'-chlorophenyl) -pyrrole (pyrrolnitrin); N-trichloromethylthio-4-cyclohexene-l12-dicarboximide (captan); methyl 1-(butylcarbamoyl) -2-benzimidazolecarbamate) (benomyl); 3-(3,5 -dichlorophenyl) -N-(l-methylethyl -2,4-dioxo-l-imi-dazolidinecarboxamide (Rovral, iprodione).

Free access

Lisa J. Rowland, Elizabeth L. Ogden, Fumiomi Takeda, David Michael Glenn, Mark K. Ehlenfeldt, and Bryan T. Vinyard

Injury of open flowers often occurs in fruit crops by late winter or early spring frosts and can result in significant reduction in yield. In this study, freezing tolerance of open flowers of five highbush blueberry cultivars, Bluecrop, Elliott, Hannah’s Choice, Murphy, and Weymouth, was determined using two freezing methods. Methods involved either placing whole plants in a radiation frost chamber or detached shoots in a glycol-freezing bath. In both methods, plants (or excised shoots) with opening flowers were exposed to temperatures ranging from –2 to –10 °C. After freeze treatments, several flower parts were evaluated for damage and the lethal temperature50 (LT50) determined. In order, from the most sensitive flower part to the least sensitive on average, were the corolla, filament, anther, style, exterior ovary, stigma, ovules, interior ovary, and placenta. A two-way analysis of variance (ANOVA) found no significant effect of the freezing method on the calculated freeze damage to most of the various flower parts. However, a significant genotype effect was found on freeze damage to the style, filament, anthers, and exterior ovary. Overall, ‘Bluecrop’ was the most sensitive to freezing, whereas ‘Hannah’s Choice’ and ‘Murphy’ were the most freezing-tolerant. In conclusion, genotypic variability in frost tolerance of open highbush blueberry flowers was detected, which can be exploited in breeding for more frost-tolerant cultivars.

Full access

R. Karina Gallardo, Eric T. Stafne, Lisa Wasko DeVetter, Qi Zhang, Charlie Li, Fumiomi Takeda, Jeffrey Williamson, Wei Qiang Yang, William O. Cline, Randy Beaudry, and Renee Allen

The availability and cost of agricultural labor is constraining the specialty crop industry throughout the United States. Most soft fruits destined for the fresh market are fragile and are usually hand harvested to maintain optimal quality and postharvest longevity. However, because of labor shortages, machine harvest options are being explored out of necessity. A survey on machine harvest of blueberries (Vaccinium sp.) for fresh market was conducted in 2015 and 2016 in seven U.S. states and one Canadian province. Survey respondents totaled 223 blueberry producers of various production sizes and scope. A majority (61%) indicated that their berries were destined for fresh markets with 33% machine harvested for this purpose. Eighty percent said that they thought fruit quality was the limiting factor for machine-harvested blueberries destined for fresh markets. Many producers had used mechanized harvesters, but their experience varied greatly. Just less than half (47%) used mechanical harvesters for fewer than 5 years. Most respondents indicated that labor was a primary concern, as well as competing markets and weather. New technologies that reduce harvesting constraints, such as improvements to harvest machinery and packing lines, were of interest to most respondents. Forty-five percent stated they would be interested in using a modified harvest-aid platform with handheld shaking devices if it is viable (i.e., fruit quality and picking efficiency is maintained and the practice is cost effective). Overall, the survey showed that blueberry producers have great concerns with labor costs and availability and are open to exploring mechanization as a way to mitigate the need for hand-harvest labor.