Search Results

You are looking at 41 - 46 of 46 items for

  • Author or Editor: Dennis P. Stimart x
  • Refine by Access: All x
Clear All Modify Search
Free access

James F. Harbage, Dennis P. Stimart, and Ray F. Evert

Anatomical events of adventitious root formation in response to root induction medium, observing changes during induction and post-induction stages, were made with microcuttings of `Gala' apples. Shoot explants on root induction medium containing water, 1.5 μm IBA, 44 mm sucrose, or 1.5 μm IBA + 44 mm sucrose after 4 days of treatment averaged 0, 0.2, 2.2, and 11.9 meristemoids per microcutting, respectively. Meristemoids formed in response to sucrose were confined to leaf gaps and traces. Time-course analysis of root induction with 1.5 μm IBA + 44 mm sucrose over 4 days revealed that some phloem parenchyma cells became densely cytoplasmic, having nuclei with prominent nucleoli within 1 day; meristematic activity in the phloem was widespread by 2 days; continued division of phloem parenchyma cells advanced into the cortex by 3 days; and that identifiable root primordia were present by 4 days. Cell division of pith, vascular cambium, and cortex did not lead to primordia formation. Meristematic activity was confined to the basal 1 mm of microcuttings. Time-course analysis of post-induction treatment revealed differentiation of distinct cell layers at the distal end of primordia by 1 day; primordia with a conical shape and several cell layers at the distal end by 2 to 3 days; roots with organized tissue systems emerging from the stem by 4 days; and numerous emerged roots by 6 days. Root initiation was detectable within 24 hours and completed by day 4 of the root induction treatment and involved only phloem parenchyma cells. Chemical names used: 1 H -indole3-butryic acid (IBA).

Free access

Rozlaily Zainol, Dennis P. Stimart, and Ray F. Evert

Anatomical analysis was performed using a double-flowered mutant of Nicotiana alata Link & Otto. Flower doubleness resulted from petaloid modification of the androecium. Vascularized petal-like outgrowths arose from the anther, connective, and filament of the stamen. The vasculature in petaloid outgrowths from the anther and upper part of the filament originated from and was continuous with the vascular bundle of the filament. In contrast, the vascular bundles formed in the outgrowths from the lower part of the filament developed independently of the vascular bundle of the filament and were not connected to it at any time. Emergences consisting of epidermal and ground parenchyma tissue and lacking vascularization arose from the filament.

Free access

James F. Harbage, Dennis P. Stimart, and Carol Auer

The influence of root initiation medium pH on root formation was investigated in relation to uptake and metabolism of applied IBA in microcuttings of Malus ×domestica Borkh. `Gala' and `Triple Red Delicious'. Root formation and uptake of H 3-IBA were related inversely to root initiation medium pH. Maximum root count (10.3 roots) and IBA uptake were observed at pH 4.0. Regardless of pH, overall root count of `Gala' was higher (13.5 roots) than `Triple Red Delicious' (4 roots). Uptake of IBA was highest at pH 4.0 for `Gala' (1.7% uptake) and at pH 4 and 5 for `Triple Red Delicious' (0.75% uptake). Metabolism of IBA was the same regardless of root initiation medium pH or cultivar examined. One-half of the IBA taken up was converted to a compound that coeluted with IBAsp during high-performance liquid chromatography. Apparently, pH regulates root formation by affecting IBA uptake but not metabolism. The level of auxin in tissue appeared unrelated to root formation between genotypes. Chemical names used: 1H-indole-3-butyric acid (IBA); 5-H 3-indole-3-butyric acid (H 3-IBA); indole-3-butrylaspartic acid (IBAsp).

Free access

Kenneth R. Schroeder, Dennis P. Stimart, and Erik V. Nordheim

Nicotiana alata Link and Otto (Jasmine tobacco) was transformed with an autoregulated senescence-inhibition gene construct PSAG12-IPT encoding isopentenyl transferase via Agrobacterium-mediated transformation. Transformation was confirmed by polymerase chain reaction. Transgenic plants exhibited up to 2- to 4-fold fewer senesced leaves, 29% longer in situ flower life, 26% more shoot dry weight, and a 32% to 50% reduction in flowers per branch. Additionally, transgenics were 28% shorter and had up to 174% more branches, indicative of cytokinin overproduction and a lack of tight autoregulation of PSAG12-IPT. Variation among independent transgenics suggests selection for enhanced PSAG12-IPT is feasible. Our observations of increased branching and in situ flower longevity, as well as reduced plant height and flowers per branch provide new information on PSAG12-IPT and its potential value for biological study and horticultural application.

Free access

Jaime A. Weber, William J. Martin, and Dennis P. Stimart

Progeny of 158 F5 × F5 crosses of Antirrhinum majus (snapdragon) selected within and among cut flower postharvest longevity (PHL) categories (long = 12.6-16.8 days, middle = 9.3-12.1 days, and short = 4.8-8.9 days) were evaluated for PHL and quality traits. Results were compared with previous studies involving F2 × F2 progeny, and F3, F4, and F5 inbred lines. Heritability of PHL in F5 × F5 progeny (0.77 ± 0.11) agrees with that of inbred lines (0.79 to 0.81) but is higher than in F2 × F2 progeny (0.41). Therefore, selection for increased PHL should progress more rapidly and predictably through application of inbred lines rather than F2 individuals. Significant differences between F5 × F5 progeny PHL categories confirm PHL is heritable with a significant additive component. Heritabilities of quality traits in A. majus are high, suggesting selection for quality traits should progress without difficulty. Phenotypic and genotypic correlations of PHL with quality traits are not consistently significant across PHL studies in A. majus. Discrepancies between studies suggest most traits may not be correlated to PHL or are subject to strong environmental influence.

Free access

Nicholas P. Howard, Dennis Stimart, Natalia de Leon, Michael J. Havey, and William Martin

Impatiens (Impatiens walleriana) are currently among the most valuable and widely cultivated floriculture crops in the world. Attractive floral display is a primary goal for breeders of impatiens. Although breeders have selected for this trait, little consideration has been given to floral longevity as a means to increase the floral display of bedding crops. In this study, 259 commercial inbred lines of impatiens were grown in a greenhouse and evaluated for floral longevity as defined by the time between when a flower was completely open to when all of the petals abscised from the pedicle. Mean floral longevity of inbreds ranged from 3.3 ± 0.4 to 15.8 ± 2.5 days. Twelve inbreds (six with long floral longevity and six with short floral longevity) were chosen and crossed in a half diallel to create 66 hybrids that were analyzed for floral longevity in three greenhouse environments. Mean floral longevity of hybrids across greenhouse environments ranged from 2.8 ± 0.4 to 14.1 ± 2.8 days. Significant general (GCA) and specific (SCA) combining abilities for floral longevity were detected. GCA mean squares were 37 times larger than SCA mean squares, revealing that additive genetic effects play a more important role in the inheritance of floral longevity in impatiens. This information, coupled with the significant amount of variation for floral longevity among inbreds, indicates that there is good potential for breeding for floral longevity in impatiens to improve the floral display of hybrids.