Search Results

You are looking at 41 - 47 of 47 items for

  • Author or Editor: Charles F. Forney x
  • Refine by Access: All x
Clear All Modify Search
Free access

Lihua Fan, Jun Song, Charles F. Forney, and Michael A. Jordan

Ethanol concentration and chlorophyll fluorescence (CF) were measured as signs of heat stress in apple fruit [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.]. `McIntosh', `Cortland', `Jonagold', and `Northern Spy' apples were placed in trays and exposed to 46 °C for 0, 4, 8, or 12 hours. Following treatments, fruit were stored in air at 0 °C and evaluated after 0, 1, 2, or 3 months. Ethanol and ethylene production, CF, peel and flesh browning, firmness, skin color, soluble solids, and titratable acidity were measured. Increases in ethanol were apparent immediately following 12-hour heat treatments as well as after 3 months. After 3 months, ethanol concentrations were 16-, 52-, 6-, and 60-fold higher in `McIntosh', `Cortland', `Jonagold', and `Northern Spy' apples than in controls, respectively. The concentrations of ethanol accumulated reflected the degree of heat-induced fruit injury. Heat treatments reduced ethylene production relative to control values. After 3 months of storage ethylene production of fruit exposed to 46 °C for 12 h was <0.48 μmol·kg-1·h-1 compared to >4.3 μmol·kg-1·h-1 for controls. Heat treatments also reduced CF which was expressed as Fv/Fm, where Fv is the difference between the maximal and the minimal fluorescence (Fm - Fo), and Fm is the maximal fluorescence. After 3 months storage at 0 °C, Fv/Fm was ≈0.2 in fruit held at 46 °C for 12 hours compared with 0.5-0.6 for control fruit. Exposure to 46 °C for 12 hours caused severe peel and flesh browning in all cultivars. Severity of peel and flesh browning increased with increasing duration of heat treatment and subsequent storage at 0 °C. `Northern Spy' apple fruit were most susceptible to heat stress based on the degree of flesh browning. Heat treatments of 8 and 12 hours reduced firmness of `McIntosh', `Cortland', and `Northern Spy', but not `Jonagold' apples. Hue angle of the green side of fruit was also reduced in `Cortland', Jonagold' and `Northern Spy' apples receiving the 8- and 12-hour treatments. Heat treatments caused a decrease in fruit tiratable acidity, but had no effect on soluble solids content. The increase in ethanol production and decrease in CF correlated with heat-induced injury, and were apparent before browning was visually apparent. Ethanol and CF have the potential to be used to nondestructively predict the severity of injury that develops during storage.

Free access

Charles F. Forney, Michael A. Jordan, Kumudini U.K.G. Nicholas, and Jennifer R. DeEll

Use of volatile emissions and chlorophyll fluorescence as indicators of freezing injury were investigated for apple fruit (Malus ×domestica Borkh.). `Northern Spy' and `Delicious' apples were kept at -8.5 °C for 0, 6, or 24 h, and then at 20 °C. After 1, 2, 5, and 7 d at 20 °C, fruit were analyzed for firmness, skin and flesh browning, soluble solid content, titratable acidity, ethanol, ethyl acetate, ethylene, respiration rate, and chlorophyll fluorescence. Freezing caused skin and flesh browning and a loss of fruit firmness, which was greater in `Northern Spy' than in `Delicious'. In `Northern Spy' fruit subjected to the freezing treatments, ethanol and ethyl acetate concentrations were as much as 37- and 300-fold greater, respectively, than in control fruit. `Delicious' fruit showed similar patterns of ethanol and ethyl acetate increase, but of lower magnitude, as a result of freezing. Higher fruit respiratory quotients were associated with increased ethanol and ethyl acetate concentrations. Ethylene production and chlorophyll fluorescence of fruit were reduced by freezing.

Free access

Charles F. Forney, Kumudini U.K.G. Nicholas, and Michael A. Jordan

Factors affecting the firmness of `Burlington', `Coville', and `Jersey' highbush blueberries (Vaccinium corymbosum L.) during storage in controlled atmospheres or air were characterized. Fruit were stored for up to 9 weeks in 6-ounce plastic clamshells at 0 or 3 °C. Fruit firmness was measured as grams per millimeter of fruit deformation using a FirmTech1 firmness tester (Bioworks, Stillwater, Okla.). Blueberry fruit held in sealed chambers in 0% CO2/15% O2 did not soften during storage. At 0 and 3 °C, fruit firmness of all cultivars increased an average of 30% after 9 weeks of storage. Changes in fruit firmness varied between cultivars and ranged from no change in `Coville' fruit held at 3 °C to an increase in firmness of 9 g·mm–1 per week in `Burlington' fruit held at 3 °C. CO2 inhibited the postharvest firming of blueberry fruit and at higher concentrations induced softening. At 0 °C, fruit firmness decreased below initial values when held in concentrations of CO2 >12% for `Burlington' and >10% for `Coville' and `Jersey'. At 3 °C, fruit were more tolerant to CO2 and softening occurred at CO2 concentration >17% for `Burlington', and >12% for `Coville' and `Jersey' fruit. CO2-induced softening was enhanced by increased storage time. CO2 also was effective in reducing fruit decay. After 9 weeks, 2% and 36% of fruit held in air at 0 and 3 °C, respectively, were decayed. However, all fruit held in 10 to 25% CO2 had <1% decay. Controlled atmospheres of 10% to 15% CO2 reduced decay while maintaining fruit firmness.

Free access

Charles F. Forney, Roger E. Rij, Ricardo Denis-Arrue, and Joseph L. Smilanick

The potential use of vapor phase hydrogen peroxide (VPHP) to prevent decay caused by Botrytis cinerea Pers. ex Fr. in table grapes (Vitis vinifera L.) was investigated. `Thompson Seedless' and `Red Globe' grapes, inoculated with Botrytis cinerea spores, were placed in polyethylene bags and flushed for 10 minutes with VPHP generated from a 30% to 35% solution of liquid hydrogen peroxide at 40C. Immediately after treatment, bags were sealed and held at 10C. Vapor phase hydrogen peroxide significantly reduced the number of terminable Botrytis spores on grapes. The number of terminable spores on `Thompson Seedless' and `Red Globe' grapes had been reduced 81% and 62%, respectively, 24 hours following treatment. The incidence of decay on inoculated `Thompson Seedless' and `Red Globe' grapes was reduced 33% and 16%, respectively, after 8 days of storage at 10C compared with control fruit. Vapor phase hydrogen peroxide reduced the decay of noninoculated `Thompson Seedless' and `Red Globe' grapes 73% and 28%, respectively, after 12 days of storage at 10C. Treatment with VPHP did not affect grape color or soluble solids content.

Free access

Wilhelmina Kalt, Christopher Lawand, Daniel A.J. Ryan, Jane E. McDonald, Horst Donner, and Charles F. Forney

The antioxidant properties of blueberries have been examined only in ripe fruit, although fruit of different maturities are used in processed food products. In this study, highbush blueberry cultivars Bergitta, Bluegold, and Nelson highbush blueberry fruit at different stages of ripeness were examined to characterize differences in oxygen radical absorbing capacity (ORAC) and the phenolic components responsible for ORAC. Underripe fruit at different stages of maturity were also stored at 20 °C for up to 8 days to assess changes in ORAC and phenolic content. Anthocyanin content was substantially higher in fruit of more advanced stages of ripeness. In contrast, the phenolic content and ORAC were lower in the riper fruit. Anthocyanins continued to form during storage, although rate of pigment formation declined after about 4 days. Less anthocyanin pigment was formed in the less ripe fruit. After 8 days of storage, the anthocyanin content of fruit harvested 5% to 50% or 50% to 95% blue exceeded that of ripe fruit. Up to 60% of the total phenolic content could be accounted for by anthocyanins. ORAC was positively correlated with total phenolic content (R 2 = 0.78), but not with anthocyanin content.

Free access

Charles F. Forney, Jun Song, Lihua Fan, Paul D. Hildebrand, and Michael A. Jordan

Fresh broccoli (Brassica oleracea L. Italica group) florets untreated or treated with 1 μL·L-1 1-methylcyclopropene (1-MCP) for 14 h, were stored at 12 °C with 0, 200, or 700 nL·L-1 ozone. Senescence parameters were evaluated after 0, 1, 2, 5, 8, or 12 days of storage. Treatment with 1-MCP delayed the yellowing of florets, and at day 5 the hue angle of 1-MCP treated florets was 116° (green) compared to 102° (yellow) for the control. Respiration rates of florets were reduced by 1-MCP for the first 5 days. The 1-MCP treatment maintained higher chlorophyll fluorescence expressed as Fv/Fm during 12 days of storage. Also, 1-MCP reduced dimethyl trisulfide production, which contributes to off-odor development in broccoli florets. Compared with the controls, florets stored in 200 nL·L-1 ozone had less mold growth and yellowed more slowly, but no differences were observed in respiration, ethylene production, or Fv/Fm. Florets stored in 700 nL·L-1 ozone were greener than florets held in air or 200 nL·L-1 ozone. Interestingly, chlorophyll fluorescence of the florets stored in 700 nL·L-1 ozone decreased significantly and at day 12, Fv/Fm was only 30% of its initial value. Ozone at 700 nL·L-1 stimulated respiration and ethylene production of florets after 1 day of storage, and caused visible damage in the form of increased weight loss and browning of the floret stem ends. Treatment of broccoli with 1-MCP alone or in combination with 200 nL·L-1 ozone maintained the quality and extended the shelf life of broccoli florets.

Open access

Jeffery L. Olsen, Lloyd W. Martin, Peter J. Pelofske, Patrick J. Breen, and Charles F. Forney

Abstract

Field grown strawberry plants (Fragaria × ananassa Duch.) of an advanced breeding selection (OR-US 4681) were harvested every 3–4 days during establishment and through fruiting the next spring. Plant dry weight and leaf area increased rapidly during mid-summer, then slowed and finally ceased in October. Absolute growth rate (AGR) peaked at 1 g dry matter/day near 1 Sept., then fell to zero by early October. Over this period, there was a decrease in weekly mean temperature (37%), solar radiation (47%), and daylength (35%). Maximum values of relative growth rate (RGR) (0.044 g/g/day) and unit leaf rate (ULR) (9 g/m2/day) were determined at the start of sampling at the end of June; both rates declined steadily thereafter. The following April through June, both plant dry weight and leaf area increased exponentially, whereas RGR remained constant at 0.02 g/g/day, and ULR rose from 5.5 to 6.5 g/m2/day. The rate of dry matter accumulation in fruit was exponential, whereas it was linear in leaf lamina and stems (crowns plus petioles). A much smaller proportion of dry matter was partitioned to leaves during fruiting than during plant establishment.