Search Results

You are looking at 31 - 35 of 35 items for

  • Author or Editor: Kimberly A. Williams x
  • Refine by Access: All x
Clear All Modify Search
Free access

George P. Opit, Yan Chen, Kimberly A. Williams, James R. Nechols, and David C. Margolies

In three experiments, damage caused by twospotted spider mite (TSSM; Tetranychus urticae Koch) was correlated with the quality of ivy geranium [Pelargonium peltatum (L.) L'Her ex Aiton], and the action threshold for TSSM on ivy geranium was developed. Ivy geranium quality was measured as overall plant quality—plant size and form, and leaf greenness and glossiness—leaf browning, and leaf distortion. Young plants with high initial TSSM numbers (30 TSSM/plant) exhibited the greatest damage, suggesting that monitoring for TSSM early in the plant production cycle is necessary to prevent extensive damage. The leaf distortion index and overall plant quality were correlated with cumulative TSSM density and marketability in 4-week-old plants infested with 30 TSSM, whereas leaf browning was not correlated with either. Thus, either leaf distortion or overall plant quality can be used to measure economic damage resulting from TSSM. The action threshold for TSSM on ivy geranium was determined using overall plant quality. When the predatory mite, Phytoseiulus persimilis Athias-Henriot, is used to control TSSM, the action threshold was found to be 2 TSSM/leaf. Results also showed that fertilizer combinations of 8 or 24 mm nitrogen and 0.32, 0.64, or 1.28 mm phosphorus had no effect on cumulative TSSM density. When P. persimilis was released at predator: prey ratios of 1:60, 1:20, and 1:4, TSSM damage, measured as both leaf distortion and overall plant quality, was significantly reduced at 1:4 and 1:20, but not at 1:60. A 1:4 rate resulted in the most marketable plants. These results suggest that P. persimilis should be released at a rate of 1:4 when the TSSM action threshold is reached.

Full access

Eric W. Kerschen, Caleb Garten, Kimberly A. Williams, and Melanie M. Derby

Plants in the interiorscape have many documented benefits, but their potential for use in conjunction with mechanical heating, ventilation, and air conditioning (HVAC) systems to humidify dry indoor environments requires more study. In this research, evaporation and evapotranspiration rates for a root medium control, variegated spider plants (Chlorophytum comosum), and green jade plants (Crassula argentea) were measured over 24 hours at 25% and 60% relative humidity (RH) and 20 °C to generate data for calculation of the leaf surface area and number of plants necessary to influence indoor humidity levels. Evaporation and evapotranspiration rates were higher for all cases at 25% RH compared with 60% RH. At 25% RH during lighted periods, evapotranspiration rates were ≈15 g·h−1 for spider plants and 8 g·h−1 for jade plants. Spider plants transpired during lighted periods due to their C3 photosynthetic pathway, whereas jade plants had greater evapotranspiration rates during dark periods—about 11 g·h−1—due to their crassulacean acid metabolism (CAM) photosynthetic pathway. A combination of plants with different photosynthetic pathways (i.e., C3 and CAM combination) could contribute to greater consistency between evapotranspiration rates from day to night for humidification of interior spaces. Using the measured data, calculations indicated that 32,300 cm2 total spider plant leaf surface area, which is 25 spider plants in 4-inch-diameter pots or fewer, larger plants, could increase the humidity of an interior bedroom from 20% RH to a more comfortable 30% RH under bright interior light conditions.

Free access

Wendy A. Johnson, Raymond A. Cloyd, James R. Nechols, Kimberly A. Williams, Nathan O. Nelson, Dorith Rotenberg, and Megan M. Kennelly

Two greenhouse studies were conducted to examine effects of nitrogen source on primary and secondary metabolism of pac choi (Brassica rapa L. subsp. chinensis cv. Mei Qing Choi) and diamondback moth (Plutella xylostella L.) consumption, development, survival, and body weight. Applications of a liquid organic source of nitrogen (fish hydrolysate fertilizer) were compared with a conventional fertilizer to determine whether nitrogen source directly impacts pac choi chemistry (elemental composition and phenolics) and biomass and indirectly affects diamondback moth fitness parameters. There was no significant effect of fertility treatment on pac choi chemistry or biomass with the exception of percent leaf phosphorus, which was significantly higher in the conventional fertility treatment, and p-coumarin, which was significantly higher in the organic fertility treatment. Diamondback moth also affected plant chemistry. Both calcium (Ca) and magnesium (Mg) were significantly higher in plants infested with larvae compared with uninfested plants. Fertilizer affected diamondback moth fitness with percent survival and cohort development significantly reduced on pac choi associated with the organic fertilizer. However, pac choi receiving the organic treatment was similar in regard to primary nutrients and secondary compounds compared with plants that received a conventional fertilizer.

Full access

Ellen T. Paparozzi, Kimberly A. Williams, Robert Geneve, Harlene Hatterman-Valenti, Cynthia Haynes, Helen Kraus, Cynthia McKenney, and Joelle Pitts

As times change, so must education change—particularly its availability. Gone are classes taught solely in a traditional lecture style with the professor pontificating to a group of 18- to 22-year-old students. The advent of the Internet, smart phones, and electronic book readers, coupled with technology-hungry and savvy consumers, has led to a significant change in the ways courses are delivered. Information—accurate and inaccurate—is available with a few key strokes. These advances in technology, coupled with an economic downturn and a reduction in university teaching resources, have made it clear that the teaching paradigm must shift. To attract students and still

Full access

Edward E. Carey, Lewis Jett, William J. Lamont Jr, Terrance T. Nennich, Michael D. Orzolek, and Kimberly A. Williams

High tunnels are becoming an increasingly important production tool for vegetable, small fruit, and cut flower growers in many parts of the United States. They provide a protected environment relative to the open field, allowing for earlier or later production of many crops, and they typically improve yield and quality as well as disease and pest management. Producers, ranging from small-scale market gardens to larger scale farms, are using high tunnels of various forms to produce for early markets, schedule production through extended seasons, grow specialty crops that require some environmental modification, and capture premium prices. The rapid ongoing adoption of high tunnels has resulted in numerous grower innovations and increased university research and extension programming to serve grower needs. An informal survey of extension specialists was conducted in 2007 to estimate numbers (area) of high tunnels and crops being grown in them by state, and to identify current research and extension efforts. Results of this survey provide an indication of the increasing importance of these structures for horticultural crop production across the country.