Search Results

You are looking at 31 - 40 of 76 items for

  • Author or Editor: John M. Dole x
  • Refine by Access: All x
Clear All Modify Search
Full access

Alicain S. Carlson and John M. Dole

Pineapple lily (Eucomis hybrids) has long, striking inflorescences that work well as a cut flower, but information is needed on proper production methods and postharvest handling protocols. The objective of this study was to determine the effects of bulb storage temperature and duration, production environment, planting density, and forcing temperatures on cut flower production of ‘Coral’, ‘Cream’, ‘Lavender’, and ‘Sparkling Burgundy’ pineapple lily. Stem length was greater in the greenhouse than the field and at the low planting density. Plants in the field at the low planting density had the shortest stem length for ‘Coral’ and ‘Cream’, but still produced marketable lengths of at least 30 cm. Planting density did not affect ‘Lavender’ and ‘Sparkling Burgundy’ stem length or number of marketable stems. The productivity (number of marketable stems per bulb) was affected only by planting density for ‘Coral’ and planting environment for ‘Cream’. Differences in stem quality and productivity differed for each cultivar and planting density over the next two seasons. The productivity of ‘Coral’ increased significantly from year to year, while the productivity of ‘Cream’ only significantly increased between the first and second years. The low planting density resulted in slightly more stems per bulb for ‘Coral’ over the next two seasons. Emergence after bulb storage treatments was highest in treatments where the bulbs were not lifted from the substrate and were subsequently grown at 18 °C. Bulbs grown in the warmest (18 °C) production temperature flowered soonest and had shorter stem lengths. For earliest flowering, bulbs should be stored in substrate in cool temperatures of at least 13 °C and forced at warm temperatures of at least 18 °C.

Free access

John M. Dole, Janet C. Cole, and Randall M. Smith

Poinsettias (Euphorbia pulcherrima 'Gutbier V-14 Glory'), chrysanthemums (Dendranthema grandiflora 'Tara') and geraniums (Pelargonium xhortorum 'Orbit') were grown using various ratios of controlled release:constant liquid fertilization as a percentage of recommended rates (%CRF:%CLF). While plants grown under the 100:0 CRF:CLF regime produced significantly less nitrates, phosphates and total soluble salts in the leachate than 0:100 or 50:50 CRF:CLF, quality rating, plant diameter, and leaf, bract and flower dry weight of poinsettias and chrysanthemums were reduced. Geraniums grown under 100:0, 50:50 or 0:100 CRF:CLF regimes were similar in quality rating, height, diameter, dry weights and days to anthesis. Poinsettias and chrysanthemums grown under 50:50 CRF:CLF were similar in height, days to anthesis, plant diameter, flower and stem dry weights and quality rating but produced less nitrates, phosphates and total soluble salts in the leachate than plants grown under 0:100 CRF:CLF. However, chrysanthemums grown under 50:50 CRF:CLF had lower leaf and root dry weights and poinsettias had lower leaf and bract dry weights than under 0:100 CRF:CLF regime.

Free access

John M. Dole, Janet C. Cole, and Sharon L. von Broembsen

`Gutbier V-14 Glory' poinsettias (Euphorbia pulcherrima Willd. Ex. Klotzsch) grown with ebb-and-flow irrigation used the least amount of water and produced the least runoff, and plants grown with capillary mats used the greatest amount of water and produced the most runoff, compared to microtube and hand-watering systems. The maximum amount of water retained by the pots and media was greatest for the microtube and ebb-and-flow systems and became progressively lower for the hand-watering and capillary mat systems. The media and leachate electrical conductivity from plants grown with subirrigation systems was higher than those grown with top irrigation. For the two top-irrigation systems (microtube and hand-watering), plants grown with 250 mg N/liter from a 20N-4.4P-16.6K water-soluble fertilizer had greater leaf, stem, and total dry weights than those grown with 175 mg N/liter. The two subirrigation systems (ebb-and-flow and capillary mat) produced plants that were taller and had greater leaf, stem, and total dry weights when grown with 175 than with 250 mg N/liter. The higher fertilizer concentration led to increased N, P, Fe, and Mn concentration in the foliage. Nitrogen concentration was higher in top-irrigated plants than in subirrigated plants. The ebb-and-flow system produced the greatest total dry weight per liter of water applied and per liter of runoff; capillary mat watering was the least efficient in regard to water applied and runoff.

Free access

Jaime K. Morvant, John M. Dole, and Janet C. Cole

Euphorbia pulcherrima `Gutbier V-14 Glory' were grown with 220 mg·liter–1 N (20N–4.4P–16.6K) using ebb-and-flow (EF), capillary mat (CAP), microtube (MIC), and hand-watering (HAN) and were irrigated either daily (pulse - P) or as needed (regular - R). For all irrigation systems, pulse irrigation produced the greatest total dry weight. HAN-R produced lower total dry weight than all other irrigation systems and frequencies. Root dry weight was highest with pulse subirrigation (EF and CAP). MIC-P, EF-P, and EF-R were the most water-efficient treatments. The experiment was repeated twice with similar results. In a second experiment, Pelargonium ×hortorum `Pinto Red' root balls were sliced into three equal segments; top, middle, and bottom. For all irrigation systems, root counts were lowest in the top region. EF root counts were greatest in the middle region, while MIC root counts were greatest in the bottom region. The two subirrigation systems had higher average root counts than the two top-irrigated systems (HAN and MIC). In general, there was less difference in EC between regions for top-irrigated than for subirrigated root balls. The EC was lowest in the bottom and middle regions of EF and the bottom region of MIC and CAP. For subirrigation, the highest EC was in the top region. For all systems, pH was lowest in the bottom region.

Free access

Carlma B. Bratcher, John M. Dole, and Janet C. Cole

The germination responses of wild blue indigo [Baptisia australis (L.) R. Br.], purple coneflower [Echinacea purpurea (L.) Moench.], Maximilian sunflower (Helianthus maximiliani Schrad.), spike goldenrod (Solidago petiolaris Ait.), and Missouri ironweed (Vernonia missurica Raf.) seeds after 0, 2, 4, 6, 8, or 10 weeks of stratification at 5C were investigated. Seed viability was determined using triphenyl tetrazolium chloride staining and germination based on the percentage of viable seeds. Germination percentage (GP) increased in all five species as weeks of stratification increased. Days to first germination and germination range (days from first to last germinating seed) decreased with increasing weeks of stratification, but the effect beyond 4 to 6 weeks was minimal. The number of weeks of stratification for maximum GP was 4 for purple coneflower, 6 for Maximilian sunflower, 8 for Missouri ironweed, and 10 for wild blue indigo and spike goldenrod.

Free access

Jaime K. Morvant, John M. Dole, and Janet C. Cole

Pelargonium ×hortorum Bailey `Pinto Red' plants were fertilized with equal amounts of N, P, and K derived from: 1) 100% constant liquid fertilization (CLF); 2) 50% CLF plus 50% controlled-release fertilizer (CRF); or 3) 100% CRF per pot and irrigated using hand (HD), microtube (MT), ebb-and-flow (EF), or capillary mat (CM) irrigation systems. The treatment receiving 100% CRF produced greater total dry weights, and released lower concentrations of NO3-N, NH4-N, and PO4-P in the run-off than the 100% CLF treatment. The percentage of N lost as run-off was greatly reduced with the use of CRF. MT irrigation produced the greatest plant growth and HD irrigation produced the least. The EF system was the most water efficient, with only 4.7% of water lost as run-off. Combining the water-efficient EF system with the nutrient-efficient CRF produced the greatest percentage of N retained by plants and medium (90.7) and the lowest percentage of N lost in the run-off (1.7).

Free access

John M. Dole, Janet C. Cole, and Vicki Stamback

Rooted cuttings of four woody cut species, Buddleia davidii `Black Knight' (butterfly bush), Forsythia × intermedia `Lynwood Gold', Salix chaenomeloides (Japanese pussywillow), and Salix matsudana `Tortuosa' (corkscrew willow) were planted outdoors in 23 Apr. 1992. During the next year, forsythia, pussywillow, and corkscrew willow plants were either unpruned or pruned to 30–45 cm above the ground: 1) during dormancy or immediately after harvest (winter); 2) 3 to 4 weeks after start of shoot growth (spring); or 3) in early June (summer), and number and length of stems harvested was recorded for three years. Butterfly bush was either unpruned or pruned to 8 cm above the ground during: 1) winter or 2) spring, and number and length of stems recorded for 2 years. Stem length and number increased each year for all four species, and all species produced harvestable stems within 1 year after planting. For forsythia, no differences due to treatment were found, although year by treatment interactions were noted. The unpruned control produced the longest and greatest number of stems for pussy willow. Winter or spring pruning produced the longest and greatest number of stems for corkscrew willow. For butterfly bush, spring or no pruning produced the greatest number of stems, and year by treatment interactions were noted.

Free access

Michael D. Frost, Janet C. Cole, and John M. Dole

Improving the quality of water released from containerized production nurseries and greenhouse operations is an increasing concern in many areas of the United States. The potential pollution threat to our ground and potable water reservoirs via the horticultural industry needs to receive attention from growers and researchers alike. `Orbit Red' geraniums were grown in 3:1 peat:perlite medium with microtube irrigation to study the effect of fertilizer source on geranium growth, micronutrient leaching, and nutrient distribution. Manufacturer's recommended rates of controlled-release (CRF) and water-soluble fertilizers (WSF) were used to fulfill the micronutrient requirement of the plants. Minimal differences in all growth parameters measured between WSF and CRF were determined. A greater percentage of Fe was leached from the WSF than CRF. In contrast, CRF had a greater percentage of Mn leached from the system than WRF during the experiment. Also, regardless of treatment, the upper and middle regions of the growing medium had a higher nutrient concentration than the lower region of medium.

Free access

Janet C. Cole, John M. Dole, and Vicki L. Stamback

Water quality has become a significant issue in the nursery industry. Local testing of runoff contamination from nursery production is, however, of little value to other growers because of the variation in management practices and nursery layouts. Two nursery blocks have been designed and constructed to test runoff from production with sprinkler and drip irrigation systems in combination with constant liquid fertilization and controlled release fertilizers. Management practices using various combinations of irrigation systems with fertilizer application rates are being tested in a small area with reasonable control of inputs. Preliminary data has shown no difference in plant response to irrigation method, but runoff was significantly reduced with drip irrigation. Plant quality was better with controlled release fertilizer, which generally yielded less N and P contamination in runoff, than constant liquid fertilization except during extremely hot weather.

Free access

Carlma B. Bratcher, John M. Dole, and Janet C. Cole

The effect of cold on germination rate, percentage and range of five cut flowers was investigated: Baptisia australis (Wild Blue Indigo), Echinacea purpurea (Purple Coneflower), Helianthus maximilianii (Maximillian Sunflower), Solidago petiolaris (Spike Goldenrod), and Vernonia missurica (lronweed). Viability was determined for the species using TTC staining and germination based on percent viable seed. Seeds were given 0, 2, 4, 6, 8, or 10 weeks of cold at 5°C. Increasing weeks of cold decreased days to germination in all five species, with Baptisia demonstrating the greatest effect. The germination percent increased as weeks of cold increased in all five species, but was most significant in Helianthus and Vernonia. Days from first to last germinating seed was significantly decreased in all five species as weeks of cold increased. Four weeks of cold was optimum for Echinacea and Vernonia, while optimum weeks of cold for Helianthus and Solidago was six weeks and Baptisia ten weeks.