Search Results

You are looking at 31 - 40 of 57 items for

  • Author or Editor: James Luby x
  • Refine by Access: All x
Clear All Modify Search
Free access

Todd A. Burnes, Robert A. Blanchette, Jason A. Smith, and James J. Luby

Gooseberries and currants (Ribes L.) are the alternate hosts for the fungus Cronartium ribicola J. C. Fischer, the causal agent of white pine blister rust. In this study, 16 black currant (R. nigrum L.) cultivars, including three accessions of the putatively immune cultivar ‘Consort’ and three cultivars developed at the University of Minnesota Horticultural Research Center, were screened for resistance to C. ribicola using artificial inoculation procedures. Twelve of these cultivars were grown in the field and observed for natural infection. Cultivars ‘Ben Sarek’, ‘Ben Lomond’, and ‘C2-2-1’ were infected naturally in the field at the University of Minnesota Horticultural Research Center in 2000, 2001, and 2004. Cultivars ‘Ben Sarek’, one mislabeled ‘Consort’ accession, R. nigrum ‘WI-1’, and ‘Ben Lomond’ had significantly more uredinial sori than other cultivars when inoculated artificially. To determine if the infected and noninfected ‘Consort’ clones were genetically related, DNA microsatellite genotyping was carried out to fingerprint these clones. One of the six microsatellite loci resulted in a polymorphism that indicated the infected clone was genetically different from the noninfected clones. In addition, the inoculation procedures used in these studies are generally efficacious for predicting resistance in the field because none of the field-infected cultivars were resistant in the greenhouse. This study confirms the Cr gene for resistance to C. ribicola in Ribes has remained effective for over 50 years.

Free access

Amy J. Moberg, James J. Luby, Carl J. Rosen, and Peter D. Ascher

Accessions of Vaccinium species (deliciosum, ovalifolium, membranaceum, parvifolium, scoparium) were evaluated for tolerance to higher pH in the root zone using an in vitro screening procedure. Seeds were germinated on media containing all essential nutrients with nitrogen in the nitrate form at pH 5 and pH 6 and evaluated for 21 weeks. Excess EDTA was used to buffer the micronutrients and pH was buffered by MES and succinic acid. Germination varied among species with V. ovalifolium being highest and V. parvifolium not germinating at all. Mortality was lower at pH 5. At pH 6, V. ovalifolium and V. membranaceum exhibited variation for growth while all other species suffered complete mortality.

Free access

Chad E. Finn, Carl J. Rosen, James J. Luby, and Peter D. Ascher

Seedlings from crosses among Vaccinium corymbosum L., V. angustifolium Ait, and V. corymbosum/V. angustifolium hybrid-derivative parents, and micropropagated `Northblue', `Northsky', and `Northcountry' plants, were grown for 2 years at Becker, Minn., in low (5.0) and high (6.5) soil pH regimes. Nutrient composition expressed as a concentration and total content was determined for P, K, Ca, Mg, Fe, Mn, Zn, Cu, and B in the aboveground portion of the plant. Except for Fe, the pH regime effects on aboveground plant nutrient concentration and total content were much larger than population or population × pH regime interaction effects. Population × pH regime interactions were detected for all nutrients expressed as a concentration, except for P. Generalizations about plant performance and nutrient concentration of the plant could only be made in the context of a given pH regime. At low pH, P and Mn tissue concentrations increased and Ca, Mg, and B concentrations decreased as the percentage of lowbush ancestry increased. At high pH, K, Cu, and B concentrations decreased as the percentage of lowbush ancestry increased. Overall plant performance on the higher pH soils appeared to be positively correlated to aboveground tissue concentrations of Mn, K, and Cu. When expressed as total content, population × pH regime effects were only significant for tissue Mn. Differences in total nutrient content attributed to soil pH were primarily related to differences in plant dry weight.

Free access

Chad E. Finn, James J. Luby, Carl J. Rosen, and Peter D. Ascher

Progenies from crosses among eight highbush (Vaccinium corymbosum L.), lowbush (V. angustifolium Ait.), and V. corymbosum/V. angustifolium hybrid-derivative parents were evaluated in vitro at low (5.0) and high (6.0) pH for vitality, height, and dry weight. Succinic acid and 2[N- morpholino]ethanesulfonic acid (Mes) effectively maintained pH in the medium and rhizosphere. The pH regime did not affect percent radicle emergence from seed or survival; however, percent seed germination was slightly lower at high pH. The parental general combining ability (GCA), reciprocal and maternal, but not the specific combining ability (SCA) variance components were significant for plant vitality, height, and dry weight. The GCA variance components were six to 26 times larger than the SCA variance components for the plant growth traits. Variation due to pH regime was significant for vitality and dry weight but not for plant height. The progenies of parents with high percent lowbush ancestry were taller at both pH levels than those with less such ancestry. Little variation was apparent for higher pH tolerance as measured by dry weight; however, the GCA effects suggested that the progenies of some parents performed better than others at high pH. Vaccinium angustifolium parents differed in the extent to which tolerance to high pH was transmitted. In vitro screening in concert with a traditional breeding program should be effective in improving blueberry tolerance to higher pH.

Free access

Neil O. Anderson, Peter D. Ascher, Richard E. Widmer, and James J. Luby

The generation time (0.75 to 1.5 years) in perennial, hexaploid chrysanthemums [Dendranthema grandiflora Tzvelv. (Chrysanthemum morifolium Ramat.)] impedes the rate of progress for sexual breeding programs in creating new clonal cultivars, inbred lines for hybrid seed production, and genetic studies. Modifications to the crossing environment and embryo rescue were evaluated to minimize the chrysanthemum generation cycle. One greenhouse chrysanthemum clone was outcross-pollinated using a bulk pollen source. Following emasculation, inflorescences were either left in situ or the peduncle bases were placed in styrofoam boards floating on a solution of 1% sucrose and 200 ppm 8-HQC under laboratory conditions. Embryogenesis occurred at a faster rate under laboratory conditions as tested with histological techniques; the heart stage appeared as early as the second day after pollination, compared with 11 days using in situ methods. Total embryogenic development time ranged from 25 (laboratory seed development) to 52+ days (in situ ripening). In a second test, embryo rescue (ER) significantly improved percent seed set, percent germination, and percent of progeny reaching anthesis relative to normal development. ER progeny from both garden parents were significantly earlier in total generation time than corresponding non-ER siblings. Laboratory seed development and ER were then used sequentially to obtain an average progeny generation time of =100 days, thus allowing for three generations per year. The potential impact of these two techniques on breeding chrysanthemums and other perennial crops with long generation times is discussed.

Free access

Chad E. Finn, James J. Luby, Carl J. Rosen, and Peter D. Ascher

Thirty-three seedling progenies from crosses among Vaccinium corymbosum L., V. angustifolium Ait., and V. corymbosum/V. angustifolium hybrid-derivative parents, and `Northblue', `Northsky', and `Northcountry' were grown for 2 years at three soil pH levels at Becker, Minn. Iron sulfate and lime were incorporated to amend the soil to pH levels of 4.0 and 6.5, respectively; the native soil, pH 4.5, was the third pH regime. The plants grew well in the low pH regime, poorly in the high pH regime, and intermediately in the native pH regime. Variation among populations was significant for all traits except vitality 18 months after being planted, and pH treatment affected all traits. The pH regime × population interactions were not significant for any of the plant performance characteristics. Nondestructive subjective and objective measurements were positively and highly correlated with total plant dry weight. Therefore, populations could be effectively evaluated for tolerance to higher pH without destroying the plant. Vaccinium angustifolium was not a general source of tolerance to higher pH, but some populations derived from V. angustifolium were tolerant of high soil pH.

Free access

Ahmed El-Shiekh, David K. Wildung, James J. Luby, Kay L. Sargent, and Paul E. Read

Plants of `Northblue' blueberry, propagated in tissue culture (TC) or from softwood, single-node cuttings (ST), were evaluated in field plantings established in 1984 at Becker and Grand Rapids, in central and northern Minnesota, respectively. Plantings were observed from 1987 through 1994 to determine the persistence of such effects as increased vigor, more spreading growth habit, and higher yield observed for TC plants during the initial 3 years after planting. TC plants had significantly higher yields at Grand Rapids in 1989 and 1994. At Grand Rapids, the consistently greater plant spread (bearing area) of TC plants resulted in higher yields of TC plants over all years combined. At Becker, TC and ST plants did not differ for plant height or spread after 10 years and, in 2 of 5 years, ST plants had heavier average berry weights. At Grand Rapids, TC plants did not differ consistently in height, or subjective ratings of the amount of bloom or crop. The effects of propagation method on yield and growth habit of `Northblue' are limited to early years in warmer locations, but can be of longer-term significance in colder areas with shorter growing seasons and lower winter temperatures, where plant spread is a more important factor than plant height in determining yield.

Free access

R. Karina Gallardo, Ines Hanrahan, Yeon A Hong, and James J. Luby

This study assessed the potential impacts on grower profits when the crop load management is not optimal. We used a hedonic pricing model to estimate the relationship between ‘Honeycrisp’ apple (Malus ×domestica) quantities and prices by size category. This information was used to assess potential changes in grower returns as the grower shifts production toward certain size fruit. A grower would realize a loss of $5332/acre if production of size 48 to 88 count per 40-lb box decreased by 5% and size 100 to 163 count/box increased by 5% compared with current ‘Honeycrisp’ size distribution. In addition, we used experimental auctions to estimate consumers’ willingness-to-pay (WTP) for ‘Honeycrisp’ quality characteristics. Apple consumers, in this study, were willing to pay an average of $0.12/lb more for a one-unit increase in soluble solids concentration. A $0.12/lb discount for a decrease in soluble solids content (SSC) would represent a $1362/acre loss. Optimal sizes and SSC estimated in this study are linked with crop loads no larger than seven fruit/cm2 trunk cross-sectional area under Washington state growing conditions. Given the increasing popularity of ‘Honeycrisp’, growers and allied industries should be aware of the importance of preserving the quality of this cultivar to maintain price premiums and thus profit margins.

Free access

Jong Woo Choi, Chengyan Yue, James Luby, Shuoli Zhao, Karina Gallardo, Vicki McCracken, and Jim McFerson

We conducted choice experiments with both strawberry producers and consumers. Consumer and producer willingness to pay (WTP) for the fruit attributes were estimated using mixed logit models. Through simulation using the mixed logit model results, we derived the market equilibrium prices, supply and demand curve, as well as quantities demanded and supplied for every fruit attribute. We found the highest equilibrium price was for strawberry internal color followed by flavor. Strawberry breeders can use the information when setting breeding targets, allocating resources appropriately during their breeding process and focusing on the improvement of attributes that produce the highest social surplus and total revenue.

Open access

James J. Luby, Nicholas P. Howard, John R. Tillman, and David S. Bedford

Apple (Malus ×domestica Borkh.) breeding at the University of Minnesota (UMN) has been ongoing continuously since 1908 when staff originally planted thousands of seedlings from open-pollinated (OP) seeds collected from regional orchards. The first cultivar from the program, ‘Minnehaha’, was introduced in 1920 and several others from these OP seeds followed over the next 3 decades. Controlled crosses were initiated in 1916, and until the time of this publication, 28 cultivars have been introduced. Historical records of parentage, as recorded by staff in notebooks and in 20th-century publications, have been used to inform breeding decisions but might be incorrect as indicated by earlier explorations of parentage using simple sequence repeat (SSR) markers. Our objective was to elucidate parentage and extended pedigrees of all available cultivars introduced from the UMN apple breeding program using evaluations of Mendelian errors and shared haplotype length information based on data from single nucleotide polymorphism (SNP) arrays. Sixteen of the 21 cultivars introduced before ‘Honeycrisp’ (1991) had incorrect or incomplete pedigrees that are now at least partially elucidated. These include the two most important regional cultivars in the 20th century: ‘Haralson’ (parents: ‘Malinda’ and ‘Wealthy’) and ‘Fireside’ (parents: ‘Wealthy’ and ‘Northwest Greening’). ‘Wealthy’, a widely grown cultivar in the United States in the late 19th and early 20th centuries, was a frequent parent of older UMN cultivars. ‘Malinda’ was a less frequent parent than indicated by breeding records. ‘Duchess of Oldenburg’ (synonym ‘Borowitsky’) was revealed as an ancestor of overwhelming importance in the UMN breeding program. It was an ancestor of 27 of the 28 UMN cultivars, including as a parent of two cultivars, and a grandparent of 15 cultivars, including ‘Honeycrisp’.