Search Results

You are looking at 31 - 40 of 42 items for

  • Author or Editor: Guihong Bi x
  • Refine by Access: All x
Clear All Modify Search
Free access

Pinghai Ding, Shufu Dong, Lailiang Cheng, Guihong Bi, and Leslie H. Fuchigami

Near-infrared (NIR) reflectance spectroscopy was used to determine the chemical composition of fruit and nut trees. Potted almond and bench-grafted Fuji/M26 trees were fertigated during the growing season with different N levels by modifying the Hoagland to create different levels of nitrogen and carbohydrates in plant tissues during dormancy. Dried, ground, and sieved shoot, shank, and root samples were uniformly packed into NIR cells and scanned with a Foss NIRSystem 6500 monochromator from 400 to 2500 nm. Statistical and multiple linear regression methods were used to derive a standard error of performance and the correlation between NIR reading and standard chemical composition analysis (anthrone, Kjedahl and Ninhydrin methods for carbohydrate, total N, and amino acid analysis, respectively) were determined. The multiple determination coefficients (R 2) of apple and almond tissues were 0.9949 and 0.9842 for total nitrogen, 0.9971 and 0.9802 for amino acid, and 0.8889 and 0.8687 for nonstructural carbohydrate, respectively.

Free access

Xiaojie Zhao, Guihong Bi, Richard L. Harkess, Jac J. Varco, Tongyin Li, and Eugene K. Blythe

Tall bearded (TB) iris (Iris germanica L.) has great potential as a specialty cut flower due to its fragrance and showy, multicolor display; however, limited research has been reported on optimal nitrogen (N) nutrient management for TB iris. The objectives of this study were to investigate the effects of N fertilizer rate on plant growth and flowering of ‘Immortality’ iris and determine the influence of both stored N and spring-applied N fertilizer on spring growth and flowering. On 14 Mar. 2012, rhizomes of ‘Immortality’ iris were potted in a commercial substrate with no starter fertilizer. Plants were fertigated with 0, 5, 10, 15, or 20 mm N from NH4NO3 twice per week from 28 Mar. to 28 Sept. 2012. In 2013, half of the plants from each of the 2012 N rate were supplied with either 0 or 10 mm N from 15NH4 15NO3 twice per week from 25 Mar. to 7 May 2013. Growth and flowering data including plant height, leaf SPAD, number of fans and inflorescence stems, and length of inflorescence stem were collected during the growing season. Plants were harvested in Dec. 2012 and May 2013 to measure dry weight and N concentration in leaves, roots, and rhizomes. Results showed higher 2012 N rates increased plant height, leaf SPAD reading, and number of inflorescence stems at first and second blooming in 2012. Greater 2012 N rates also increased plant dry weight and N content in all structures, and N concentration in roots and rhizomes. Rhizomes (58.8% to 66.3% of total N) were the dominant sink for N in Dec. 2012. Higher 2012 N rates increased plant height, number of fans, and the number of inflorescence stems at spring bloom in 2013. In May 2013, N in leaf tissue constituted the majority (51% to 64.3%) of the total plant N. Higher 2012 N rates increased total dry weight, N concentration, and N content in all 2013 15N rates; however, leaf dry weight in all plants was improved by 2013 15N rate. Percentage of tissue N derived from 2013 15N (NDFF) decreased with increasing 2012 N rate. New spring leaves were the dominant sink (56.8% to 72.2%) for 2013 applied 15N. In summary, ‘Immortality’ iris is capable of a second blooming in a growing season, this second blooming dependent on N fertilization rate in current year. A relatively high N rate is recommended to produce a second bloom.

Full access

Tongyin Li, Guihong Bi, Richard L. Harkess, Geoffrey C. Denny, and Carolyn Scagel

Plant growth, water use, photosynthetic performance, and nitrogen (N) uptake of ‘Merritt’s Supreme’ hydrangea (Hydrangea macrophylla) were investigated. Plants were fertilized with one of five N rates (0, 5, 10, 15, or 20 mm from NH4NO3), irrigated once or twice per day with the same total daily amount of water, and grown in either a paper biodegradable container or a traditional plastic container. Greater N rate generally increased plant growth index (PGI) in both plastic and biocontainers. Leaf and total plant dry weight (DW) increased with increasing N rate from 0 to 20 mm and stem and root DW were greatest when fertilized with 15 mm and 20 mm N. Plants fertilized with 20 mm N had the greatest leaf area and chlorophyll content in terms of SPAD reading. Container type had no influence on DW accumulation or leaf area. N concentrations (%) in leaves, roots, and the entire plant increased with increasing N rate. N concentrations in roots and in the entire plant were lower in biocontainers compared with plastic containers. Greater N rate generally increased daily water use (DWU), and biocontainers had greater DWU than plastic containers. The 20 mm N rate resulted in the highest net photosynthetic rate measured on 11 Sept. and 22 Sept. (65 and 76 days after treatment). Net photosynthetic rate (measured on 8 Oct.) and stomatal conductance (g S) (measured on 27 Aug., 22 Sept., and 8 Oct.) were lower in biocontainers compared with plastic containers. Two irrigations per day resulted in higher substrate moisture at 5-cm depth than one irrigation per day, and slightly increased PGI on 19 Aug. However, irrigation frequency did not affect photosynthetic rate, g S, or N uptake of hydrangea plants except in stems. Considering the increased water use of hydrangea plants when grown in the paper biocontainer and lower plant photosynthesis and N uptake, the tested paper biocontainer may not serve as a satisfactory sustainable alternative to traditional plastic containers.

Free access

Tongyin Li, Guihong Bi, Richard L. Harkess, Geoffrey C. Denny, Eugene K. Blythe, and Xiaojie Zhao

One-year-old liners of Encore® azalea ‘Chiffon’ (Rhododendron sp.) were transplanted in Apr. 2013 into two types of one-gallon containers: black plastic container and paper biodegradable container. Azalea plants were fertilized with 250 mL of nitrogen (N) free fertilizer solution twice weekly plus N rate of 0, 5, 10, 15, or 20 mm from ammonium nitrate (NH4NO3). All plants were irrigated with the same total volume of water through one or two irrigations daily. Plant growth and N uptake in response to N fertilization, irrigation frequency, and container type were investigated. The feasibility of biodegradable paper containers was evaluated in 1-year production of Encore® azalea ‘Chiffon’. Paper biocontainers resulted in increased plant growth index (PGI), dry weights (leaf, stem, root, and total plant dry weight), leaf area, and root growth (root length and surface area) compared with plastic containers using N rates from 10 to 20 mm. Biocontainer-grown plant had more than twice of root length and surface area as plastic container–grown plant. Leaf SPAD reading increased with increasing N rate from 0 to 20 mm. One irrigation per day resulted in greater PGI, root dry weight, root length, root surface area, and root N content than two irrigations per day. Higher tissue N concentration was found in plants grown in plastic containers compared with those grown in biocontainers when fertilized with 15 or 20 mm N. However, N content was greater for plants grown in biocontainers, resulting from greater plant dry weight. The combinations of plastic container and one irrigation per day and that of 20 mm N and one irrigation per day resulted in best flower production, 21.9 and 32.2 flowers per plant, respectively. Biocontainers resulted in superior vegetative growth of azalea plant compared with plastic containers with sufficient N supply of 10, 15, and 20 mm.

Full access

Tongyin Li, Guihong Bi, Judson LeCompte, T. Casey Barickman, and Bill B. Evans

Colored shadecloths are used in the production of vegetable, fruit, and ornamental crops to manipulate the light spectrum and to induce specific plant physiological responses. The influence of three colored shadecloths (red, blue, and black) with 50% shade and a no-shade control on the production of two lettuce (Lactuca sativa) cultivars [Two Star (green-leaf) and New Red Fire (red-leaf)] and snapdragon (Antirrhinum majus) was investigated. Use of shadecloth increased plant growth indices of lettuce and total length of snapdragon flower stems (at the first harvest) compared with no-shade control. Red shadecloth resulted in longer flower stems of snapdragon (at the second harvest) than black and blue shadecloths and no-shade control. However, shadecloth delayed blooming of snapdragon for 1 week compared with no-shade control. Stomatal conductance (g s) and leaf transpiration rate of both lettuce cultivars and photosynthetic rate and transpiration rate of snapdragon were decreased in response to shadecloth treatments. All shadecloths decreased health beneficial flavonoids (luteolin/quercetin glucuronide and quercetin malonyl concentrations for both lettuce cultivars and cyanidin glucoside in red-leaf lettuce). The two lettuce cultivars varied in their phenolic compounds, with the green-leaf ‘Two Star’ having higher quercetin glucoside and caftaric acid than red-leaf ‘New Red Fire’, whereas ‘New Red Fire’ had higher concentrations of chlorogenic acid, luteolin/quercetin glucuronide, and quercetin malonyl. Shadecloths reduced substrate temperature and photosynthetically active radiation (PAR) to about half of full sunlight compared with no-shade control, which may have contributed to reduced g s and leaf transpiration (for lettuce and snapdragon), decreased phenolic compounds in lettuce, and delayed flowering of snapdragon.

Full access

Michael R. Evans, Andrew K. Koeser, Guihong Bi, Susmitha Nambuthiri, Robert Geneve, Sarah Taylor Lovell, and J. Ryan Stewart

Nine commercially available biocontainers and a plastic control were evaluated at Fayetteville, AR, and Crystal Springs, MS, to determine the irrigation interval and total water required to grow a crop of ‘Cooler Grape’ vinca (Catharanthus roseus) with or without the use of plastic shuttle trays. Additionally, the rate at which water passed through the container wall of each container was assessed with or without the use of a shuttle tray. Slotted rice hull, coconut fiber, peat, wood fiber, dairy manure, and straw containers were constructed with water-permeable materials or had openings in the container sidewall. Such properties increased the rate of water loss compared with more impermeable bioplastic, solid rice hull, and plastic containers. This higher rate of water loss resulted in most of the biocontainers having a shorter irrigation interval and a higher water requirement than traditional plastic containers. Placing permeable biocontainers in plastic shuttle trays reduced water loss through the container walls. However, irrigation demand for these containers was still generally higher than that of the plastic control containers.

Full access

Susmitha Nambuthiri, Robert L. Geneve, Youping Sun, Xueni Wang, R. Thomas Fernandez, Genhua Niu, Guihong Bi, and Amy Fulcher

The green industry has identified the use of biodegradable containers as an alternative to plastic containers as a way to improve the sustainability of current production systems. Field trials were conducted to evaluate the performance of four types of 1-gal nursery biocontainers [keratin (KR), wood pulp (WP), fabric (FB), and coir fiber (Coir)] in comparison with standard black plastic (Plastic) containers on substrate temperature, water use, and biomass production in aboveground nurseries. Locations in Kentucky, Michigan, Mississippi, and Texas were selected to conduct experiments during May to Oct. 2012 using ‘Green Velvet’ boxwood (Buxus sempervirens × B. microphylla) and ‘Dark Knight’ bluebeard (Caryopteris ×clandonensis) in 2013. In this article, we were focusing on the impact of alternative container materials on hourly substrate temperature variations and plant growth. Substrate temperature was on an average higher (about 6 °C) in Plastic containers (about 36 °C) compared with that in WP, FB, and Coir containers. However, substrate temperature in KR containers was similar to Plastic. Substrate temperature was also influenced by local weather conditions with the highest substrate temperatures recorded in Texas followed by Kentucky, Mississippi, and Michigan. Laboratory and controlled environment trials using test containers were conducted in Kentucky to evaluate sidewall porosity and evaporation loss to confirm field observations. Substrate temperature was similar under laboratory simulation compared with field studies with the highest substrate temperature observed in Plastic and KR, intermediate in WP and lowest in FB and Coir. Side wall temperature was higher in Plastic, KR, and FB compared with WP and Coir, while side wall water loss was greatest in FB, intermediate in WP and Coir, and lowest in plastic and KR. These observations suggest that the contribution of sidewall water loss to overall container evapotranspiration has a major influence on reducing substrate temperature. The porous nature of some of the alternative containers increased water use, but reduced heat stress and enhanced plant survival under hot summer conditions. The greater drying rate of alterative containers especially in hot and dry locations could demand increased irrigation volume, more frequent irrigation, or both, which could adversely affect the economic and environmental sustainability of alternative containers.

Free access

Robin G. Brumfield, Laura B. Kenny, Alyssa J. DeVincentis, Andrew K. Koeser, Sven Verlinden, A.J. Both, Guihong Bi, Sarah T. Lovell, and J. Ryan Stewart

Greenhouse growers find themselves under increasing pressure to respond to consumer preferences to use environmentally sustainable practices and materials while maintaining profitable operations. These consumer preferences reflect a mounting awareness of the environmental issues, such as climate change and their associated social costs. Ideally, sustainable horticultural production accounts for both traditional economic considerations and such social costs, some of which can be explained through the calculation of global warming potential (GWP). An obvious candidate for a sustainable intervention is the traditional plastic pot, which growers can replace with alternative biocontainers with varying degrees of GWP. This study calculates the variability of direct costs of production using alternative containers to offer a comparison of social and economic costs. We evaluated these direct costs of producing petunia (Petunia ×hybrida) grown in pots made of traditional plastic, bioplastic, coir, manure, peat, bioplastic sleeve, slotted rice hull, solid rice hull, straw, wood fiber, and recycled reground plastic containers used in a previous assessment of GWP. Our analysis of the costs when using a traditional plastic pot showed that the highest contributors to GWP were different from the highest contributors to direct costs, revealing that the price does not reflect the environmental impact of several inputs. Electricity, the plastic shuttle tray, and the plastic pot contributed most to GWP, whereas labor, the plastic container, and paclobutrozol growth regulator contributed most to direct cost of production (COP). At 64% of total cost, labor was the most expensive input. Watering by hand added another $0.37–$0.54 per plant in labor. When we analyzed input costs of each alternative container separately, container type had the largest impact on total direct costs. Before adding container costs, the direct COP ranged from $0.56 to $0.61 per plant. After adding containers, costs ranged from $0.61 to $0.97 per plant. Wood fiber pots were the most expensive and recycled reground plastic pots were the least expensive in this study. Based on our assessment and the observed small variation in GWP between alternative containers, growers would benefit from selecting a container based on price and consumer demand. Some social costs that we are not aware of yet may be associated with some or all biocontainers.

Full access

Xueni Wang, R. Thomas Fernandez, Bert M. Cregg, Rafael Auras, Amy Fulcher, Diana R. Cochran, Genhua Niu, Youping Sun, Guihong Bi, Susmitha Nambuthiri, and Robert L. Geneve

Containers made from natural fiber and recycled plastic are marketed as sustainable substitutes for traditional plastic containers in the nursery industry. However, growers’ acceptance of alternative containers is limited by the lack of information on how alternative containers impact plant growth and water use (WU). We conducted experiments in Michigan, Kentucky, Tennessee, Mississippi, and Texas to test plant growth and WU in five different alternative containers under nursery condition. In 2011, ‘Roemertwo’ wintercreeper (Euonymus fortunei) were planted in three types of #1 (≈1 gal) containers 1) black plastic (plastic), 2) wood pulp (WP), and 3) recycled paper (KF). In 2012, ‘Green Velvet’ boxwood (Buxus sempervirens × B. microphylla siebold var. koreana) was evaluated in 1) plastic, 2) WP, 3) fabric (FB), and 4) keratin (KT). In 2013, ‘Dark Knight’ bluebeard (Caryopteris ×clandonensis) was evaluated in 1) plastic, 2) WP, and 3) coir fiber (Coir). Plants grown in alternative containers generally had similar plant growth as plastic containers. ‘Roemertwo’ wintercreeper had high mortality while overwintering in alternative containers with no irrigation. Results from different states generally show plants grown in fiber containers such as WP, FB, and Coir used more water than those in plastic containers. Water use efficiency of plants grown in alternative containers vs. plastic containers depended on plant variety, container type, and climate.

Full access

Tongyin Li, Guihong Bi, Genhua Niu, Susmitha S. Nambuthiri, Robert L. Geneve, Xueni Wang, R. Thomas Fernandez, Youping Sun, and Xiaojie Zhao

The performance of biocontainers as sustainable alternatives to the traditional petroleum-based plastic containers has been researched in recent years due to increasing environmental concern generated by widespread plastic disposal from green industry. However, research has been mainly focused on using biocontainers in short-term greenhouse production of bedding plants, with limited research investigating the use of biocontainers in long-term nursery production of woody crops. This project investigated the feasibility of using biocontainers in a pot-in-pot (PIP) nursery production system. Two paper (also referred as wood pulp) biocontainers were evaluated in comparison with a plastic container in a PIP system for 2 years at four locations (Holt, MI; Lexington, KY; Crystal Springs, MS; El Paso, TX). One-year-old river birch (Betula nigra) liners were used in this study. Results showed that biocontainers stayed intact at the end of the first growing season, but were penetrated to different degrees after the second growing season depending on the vigor of root growth at a given location and pot type. Plants showed different growth rates at different locations. However, at a given location, there were no differences in plant growth index (PGI) or plant biomass among plants grown in different container types. Daily water use (DWU) was not influenced by container type. Results suggest that both biocontainers tested have the potential to be alternatives to plastic containers for short-term (1 year) birch production in the PIP system. However, they may not be suitable for long-term (more than 1 year) PIP production due to root penetration at the end of the second growing season.