Search Results

You are looking at 31 - 40 of 69 items for

  • Author or Editor: G. Lopez x
  • Refine by Access: All x
Clear All Modify Search
Free access

Joshua R. Gerovac, Roberto G. Lopez, and Neil S. Mattson

Commercial bedding plant production in northern latitudes often begins in late winter and continues through spring, when average outdoor temperatures require growers to actively heat their greenhouses (GHs). High tunnels (HTs) offer energy savings as they are passively heated and cooled structures that have a low initial cost. As a result, they have been used in northern latitudes to advance and extend the growing season and improve the quality of high-value horticultural crops. However, there is limited published information on growing bedding plants in HTs in northern latitudes. Our objectives were to quantify the effects of transplant date in an HT with or without a rowcover (RC) compared with a traditional heated GH on the growth and morphology of three cold-tolerant bedding plant species at two northern latitude locations, Purdue University (Purdue) and Cornell University (Cornell). Seedlings of snapdragon (Antirrhinum majus L. ‘Liberty Classic Yellow’), dianthus (Dianthus chinensis L. ‘Telstar Crimson’), and petunia (Petunia ×hybrida Vilm.-Andr. ‘Wave Pink’) were transplanted on weeks 13, 14, and 15 in 2012 (Purdue) and 2013 (both locations) and moved to either a glass-glazed GH or an HT without (HT) or with a rowcover (HT+RC). Several quality measurements increased when plants were grown in the HT compared with those grown in the GH. Dianthus and petunia transplanted at Purdue during week 13 in the HT and HT+RC were 33% and 47% shorter and had 51% and 31% more visible buds, respectively, compared with those grown in the GH. Similarly, petunia transplanted at Cornell during week 13 in the HT and HT+RC were 45% and 43% shorter, respectively, than their GH counterparts. The shoot dry mass of dianthus and snapdragon at Purdue was significantly higher when grown in the HT compared with the GH, regardless of transplant week or the use of RC likely because of increased daily light integral (DLI) in the HT environment. There was about a 1-week delay from transplant to first open flower for week 13 dianthus (at Purdue) and petunia (at both locations) when finished in the HT or HT+RC vs. their GH counterparts. Such a delay would be acceptable to growers who want to reduce the use of chemical growth regulators and heating costs. However, at both locations snapdragon transplanted on week 13 to the HT or HT+RC environments were delayed by 22 to 26 days compared with the GH. A delay of over 3 weeks could interfere with a grower’s production schedule, possibly making this crop unsuitable for production in northern latitude HTs.

Full access

Ariana P. Torres, Michael V. Mickelbart, and Roberto G. Lopez

Well-established protocols exist for using the pour-through extraction method to estimate substrate pH and electrical conductivity (EC) values for small root volumes. However, little work has been done to test the accuracy and consistency of these measurements in large containers. Our objective was to determine if the amount of distilled water applied to #1, #3, #5, and #10 (2-, 8-, 11-, and 27-L media volume, respectively) containers would affect leachate pH and EC values or consistency of measurements. Boxwood (Buxus ×koreana ‘Green Velvet’) was selected for this study because it is a common container-grown nursery crop. Distilled water was poured evenly over the media surface in each container 1 h after irrigation to obtain a leachate volume of either 50 mL or 2.5% of media volume and leachate EC and pH were measured. Media pH values were 0.1 to 0.3 points higher when 50 mL leachate was collected, but the difference was only significant during the first 2 weeks of measurements. There were no consistent differences in pH over container sizes or leachate volume. Leachate EC values were similar when measured in leachate collected as 50 mL total volume or 2.5% of media volume in 8- and 11-L containers. However, in 27-L containers, obtaining 50 mL leachate resulted in higher EC values than when 2.5% media volume was obtained. Both pH and EC values obtained from 50-mL leachate fractions over container sizes were more consistent than when 2.5% of the media volume was collected. Growers should collect 50 mL of leachate to test media pH and EC regardless of container size.

Free access

César Guzmán-Loza, J. Farías-Larios, and J.G. López-Aguirre

Use of arbuscular mycorrhizal fungi (MA) on horticultural plant production has great potential as a biotechnological alternative; however, information on its effects on the early growth phase of honeydew melon is lacking. Nevertheless, it would seem that inoculation at the time of sowing would decrease the stress of transplant, improve root vigor, make plants grow faster, improve drought resistance, and lessen the effect of roots diseases. In this study, we evaluated the effects of inoculating honeydew melon seedlings with two commercial formulations of MA fungi at different study times in an effort to select for higher resistance and infective capacity. `Moonshine' hybrid melon seeds were sown in trials with 200 cavities containing specific doses of inoculate: 0, 100, 200, 250, 500, and 1000 cc/trial of BuRIZE, Mycorrhiza NES. A factorial design was used (formulations and study times) with a randomized distribution and four replications. Four destructive samples were taken at 10, 15, 20, and 25 days after inoculations. Number of leaves, shoot fresh weight, dry weight, root fresh weight, foliar area, and mycorrhizal colonization were recorded. Results obtained showed a highly significant effect between commercial formulations and study times and an interaction of both factors to studied variables. Mycorrhizal colonization percentages were too low (0.3% to 1.7%). At 20 days after inoculations, it was possible to see all the components of functional arbuscular mycorrhizal symbiosis on melon plants roots. Using commercial formulations of mycorrhizal fungi decreased applications of fertilizers in melon plants.

Free access

Veronica A. Hutchinson, Christopher J. Currey, and Roberto G. Lopez

Vegetatively propagated bedding plants are produced during the late winter and early spring when outdoor photosynthetic daily light integral (DLI) is low, especially in northern latitudes. Our objective was to quantify how propagation DLI influences subsequent growth and development of annual bedding plants. Cuttings of Angelonia angustifolia Benth. ‘AngelMist White Cloud’, Nemesia fruticans (Thunb.) Benth. ‘Aromatica Royal’, Osteospermum ecklonis (DC.) Norl. ‘Voltage Yellow’, and Verbena ×hybrida Ruiz ‘Aztec Violet’ were harvested and propagated in a glass-glazed greenhouse. After callusing (≈5 mol·m−2·d−1 for 7 days), cuttings of each species were placed under one of three different fixed-woven shadecloths providing ≈38%, 61%, or 86% shade or no shade with 16 h of supplemental light for 14 days. Rooted cuttings were then transplanted into 11-cm containers and grown in a common greenhouse of 21 ± 1 °C and DLI of ≈12 mol·m−2·d−1 to identify any residual effects on subsequent growth and development during the finish stage. As DLI during propagation increased, time to first open flower decreased for Angelonia, Nemesia, Osteospermum, and Verbena. For example, time to flower for Angelonia and Osteospermum was hastened by 23 and 19 days, respectively, as DLI during propagation increased from 1.2 to 12.3 mol·m−2·d−1. Our research can be used to predict growth and flowering under varying propagation DLIs for the cultivars of Angelonia, Nemesia, Osteospermum, and Verbena in the study.

Free access

S. Guzman, H. Alejandro, J. Farias, A. Michel, and G. Lopez

Watermelon (Citrullus vulgaris Schrad.) is a widely grown crop throughout the tropics and subtropics. In Mexico, it is an economically important crop. In vitro adventitious shoot regeneration of watermelon has been reported from shoot tip culture, leaf, hypocotyl, and cotyledons. Hence, the objective of this study was to evaluate in vitro plant regeneration from axillary buds of triploid watermelon. Axillary buds explants were prepared from shoot of commercial cultivar in field of 60 old day plants. Explants of 2 to 3 mm were incubated 2 weeks on Murashige and Skoog (MS) shoot regeneration medium containing 2.5 mg/L kinetin (KT) or indole-3-butyric acid (IBA), or gibberellic acid (GA3), followed by 3 weeks on shoot elongation medium supplemented with different combinations of the same phytohormones. The percentage of explants (83% to 90%) that produced shoots, expansion in size of explant (0.81–1 cm) and shoot length (6 mm) were highest in MS medium containing KT or IBA. In the shoot elongation step, shoot length (0.9–1 cm) and leaves number (6–7) were highest in MS medium supplemented with 2.5 mg/L of KT or GA3 and 0.2 mg/L IBA, but the better induction of roots in elongated shoot occurred on MS medium with 2.5 mg/L KT and 0.2 mg/L IBA. The results show that axillary buds from watermelon is an alternative for the micropropagation of this crop.

Free access

W. Garrett Owen, Qingwu Meng, and Roberto G. Lopez

Under natural short days, growers can use photoperiodic lighting to promote flowering of long-day plants and inhibit flowering of short-day plants. Unlike traditional lamps used for photoperiodic lighting, low-intensity light-emitting diode (LED) lamps allow for a wide array of adjustable spectral distributions relevant to regulation of flowering, including red (R) and white (W) radiation with or without far-red (FR) radiation. Our objective was to quantify how day-extension (DE) photoperiodic lighting from two commercially available low-intensity LED lamps emitting R + W or R + W + FR radiation interacted with daily light integral (DLI) to influence stem elongation and flowering of several ornamental species. Long-day plants [petunia (Petunia ×hybrida Vilm.-Andr. ‘Dreams Midnight’) and snapdragon (Antirrhinum majus L. ‘Oh Snap Pink’)], short-day plants [african marigold (Tagetes erecta L. ‘Moonsong Deep Orange’) and potted sunflower (Helianthus annuus L. ‘Pacino Gold’)], and day-neutral plants [pansy (Viola ×wittrockiana Gams. ‘Matrix Yellow’) and zinnia (Zinnia elegans Jacq. ‘Magellan Cherry’)] were grown at 20/18 °C day/night air temperatures and under low (6–9 mol·m−2·d−1) or high (16–19 mol·m−2·d−1) seasonal photosynthetic DLIs from ambient solar radiation combined with supplemental high-pressure sodium lighting and DE LED lighting. Photoperiods consisted of a truncated 9-hour day (0800–1700 hr) with additional 1-hour (1700–1800 hr, 10 hours total), 4-hour (1700–2100 hr, 13 hours total), or 7-hour (1700–2400 hr, 16 hours total) R + W or R + W + FR LED lighting at 2 μmol·m−2·s−1. Days to visible bud, plant height at first open flower, and time to first open flower (TTF) of each species were influenced by DLI, lamp type, and photoperiod though to different magnitudes. For example, plant height of african marigold and potted sunflower at first open flower was greatest under R + W + FR lamps, high DLIs, and 16-hour photoperiods. Petunia grown under R + W lamps, high DLI, and 10- and 13-hour photoperiods were the most compact. For all species, TTF was generally reduced under high DLIs. For example, regardless of the lamp type, flowering of african marigold occurred fastest under a high DLI and 10-hour photoperiod. Flowering of petunia and snapdragon occurred fastest under a high DLI, R + W + FR lamps, and a 16-hour photoperiod. However, only under high DLIs, R + W or R + W + FR lamps were equally effective at promoting flowering when used to provide DE lighting. Our data suggest that under low DLIs, flowering of long-day plants (petunia and snapdragon) occurs more rapidly under lamps providing R + W + FR, whereas under high DLIs, flowering is promoted similarly under either R + W or R + W + FR lamps.

Free access

Christopher J. Currey, Veronica A. Hutchinson, and Roberto G. Lopez

Cuttings of herbaceous annual bedding plants must be rooted in late winter and early spring when ambient outdoor photosynthetic daily light integrals (DLIs) are at seasonally low levels. We evaluated the effect of DLI during root development on growth, morphology, and quality of nine popular vegetatively propagated annual bedding plant species. Cuttings of Angelonia angustifolia Benth. ‘AngelMist White Cloud’, Argyranthemum frutescens (L.) Sch. Bip. ‘Madeira Cherry Red’, Diascia barberae Hook. f. ‘Wink Coral’, Lantana camara L. ‘Lucky Gold’, Nemesia fruticans (Thunb.) Benth. ‘Aromatica Royal’, Osteospermum ecklonis (DC.) Norl. ‘Voltage Yellow’, Scaevola L. hybrid ‘Blue Print’, Sutera cordata Roth. ‘Abunda Giant White’, and Verbena Ruiz ×hybrida ‘Aztec Violet’ were harvested and propagated in a glass-glazed greenhouse with 23 °C air and substrate temperature set points. After callusing (≈5 mol·m−2·d−1 for 7 days), cuttings of each species were placed under one of three different fixed-woven shade cloths providing ≈38%, 61%, or 86% shade or no shade with 16 h of supplemental light for 14 days. There were no clear trends across species for stem length in response to DLI. Stem caliper of Argyranthemum, Diascia, and Nemesia increased by 35%, 119%, and 89%, respectively, as DLI increased from 1.2 to 12.3 mol·m−2·d−1. Depending on species, total, shoot, and root dry mass increased by 64% to 465%, 50% to 384%, and 156% to 1137%, respectively, as DLI increased from 1.2 to 12.3 mol·m−2·d−1. The quality index, an objective, integrated, and quantitative measurement of rooted cutting quality, increased for all species by 176% to 858% as DLI increased from 1.2 to 12.3 mol·m−2·d−1. Our results indicate that providing a DLI of ≈8 to 12 mol·m−2·d−1 after callusing increases both growth and quality of rooted cuttings.

Free access

Ricardo González-Ponce, Esther G. López-de-Sá, and César Plaza

Struvite (MgNH4PO4·6H2O) production is widely studied as a way to remove phosphorus (P) from wastewater and generate a potentially marketable P fertilizer, but its effects on crops have yet to be researched more thoroughly. This study was conducted to evaluate struvite recovered by the Spanish Research Council (CSIC) pilot process (STR) as a source of P for lettuce (Lactuca sativa L.) by comparing its effectiveness with that of single superphosphate (SUP), a common P fertilizer derived from phosphate rock. In a greenhouse pot experiment, a P-deficient loamy sand soil was amended with either SUP or STR at P rates of 0, 4, 8, 12, 16, and 20 mg·kg−1. Nitrogen and potassium were uniformly supplied to all treatments. The response of lettuce head fresh weight and P uptake to P rate exhibited statistically significant quadratic relationships for both SUP and STR. With respect to SUP, STR was significantly more effective in increasing lettuce yield and P uptake, probably because of the larger amount of magnesium (Mg) incorporated with this material and a synergistic effect on P uptake. This work supports previous findings based on other test crops in suggesting that STR can be a P source attractive to the fertilizer market with additional agronomic and environmental benefits such as providing available Mg and nitrogen, helping attenuate consumption of phosphate rock, and reducing release of P by discharge of treated wastewaters to surface and groundwater systems.

Free access

Joshua K. Craver, Jennifer K. Boldt, and Roberto G. Lopez

Previous research has shown high-quality annual bedding plant seedlings can be produced in controlled environments using light-emitting diode (LED) sole-source lighting (SSL). However, when only red and blue radiation are used, a delay in time to flower may be present when seedlings of some long-day species are subsequently finished in a greenhouse. Thus, our objective was to evaluate the effects of various radiation qualities and intensities under SSL on the morphology, nutrient uptake, and subsequent flowering of annual bedding plant seedlings with a long-day photoperiodic response. Coreopsis (Coreopsis grandiflora ‘Sunfire’), pansy (Viola ×wittrockiana ‘Matrix Yellow’), and petunia (Petunia ×hybrida ‘Purple Wave’) seedlings were grown at radiation intensities of 105, 210, or 315 µmol·m−2·s−1, achieved from LED arrays with radiation ratios (%) of red:blue 87:13 (R87:B13), red:far-red:blue 84:7:9 (R84:FR7:B9), or red:green:blue 74:18:8 (R74:G18:B8). Four-week-old seedlings were subsequently transplanted and grown in a common greenhouse environment. Stem caliper, root dry mass, and shoot dry mass of seedlings generally increased for all three species as the radiation intensity increased from 105 to 315 µmol·m−2·s−1, regardless of radiation quality. Similarly, stem length of all three species was generally shorter as the radiation intensity increased. Macro- and micronutrient concentrations were also generally lower as the radiation intensity increased for all three species. Pansy seedlings grown under R84:FR7:B9 flowered an average of 7 and 5 days earlier than those under R87:B13 and R74:G18:B8, respectively. These results provide information regarding the specific radiation parameters from commercially available LEDs necessary to produce high-quality seedlings under SSL, with radiation intensity appearing to be the dominant factor in determining seedling quality. Furthermore, the addition of far-red radiation can reduce time to flower after transplant and allow for a faster greenhouse turnover of some species with a long-day photoperiodic response.

Full access

Allison Hurt, Roberto G. Lopez, and Joshua K. Craver

In northern latitudes, the photosynthetic daily light integral can be less than 5 mol·m–2·d–1, necessitating the use of supplemental lighting (SL) to reduce bedding plant seedling production time and increase quality. Our objectives were 1) to quantify seedling quality and production time under continuous 16-h or instantaneous threshold SL, continuous low-intensity photoperiodic lighting (PL) for 16 or 24 hours with and without far-red light, or no electric lighting; and 2) to determine whether the described lighting treatments during propagation impact finished plant quality or flowering. Seeds of begonia (Begonia ×semperflorens) ‘Bada Bing Scarlet’, gerbera (Gerbera jamesonii) ‘Jaguar Deep Orange’, impatiens (Impatiens walleriana) ‘Accent Premium Salmon’, petunia (Petunia ×hybrida) ‘Ramblin Peach Glo’, and tuberous begonia (Begonia ×tuberosa) ‘Nonstop Rose Petticoat’ were sown in 128-cell trays and grown under either SL, PL, or no electric lighting (control). SL treatments consisted of high-intensity light-emitting diode (LED) or high-pressure sodium (HPS) lamps providing a photosynthetic photon flux density (PPFD) of either 70 µmol·m–2·s–1 on continuously for 16 h·d–1 or 90 µmol·m–2·s–1 based on an instantaneous threshold. PL treatments consisted of low-intensity red:white (R:W) or red:white:far-red (R:W:FR) lamps for 16 h·d–1 or R:W:FR lamps for 24 h·d–1. Seedlings of gerbera, impatiens, and petunia from each treatment were subsequently transplanted and finished in a common greenhouse environment. The highest quality seedlings were grown under SL compared with PL or control conditions. When comparing SL treatments, seedlings produced under HPS or LED SL using an instantaneous threshold were of equal or greater quality compared with those under continuous SL with a 16-h photoperiod. Although the greater leaf area and internode elongation under PL may give growers the perception that seedling production time is reduced, PL did not increase biomass accumulation and seedling quality. Petunia seedlings propagated under HPS lamps using an instantaneous threshold flowered 4 to 11 days earlier compared with the other SL treatments. In addition, petunia propagated under R:W:FR PL for 16 h·d–1 flowered 5 to 7 days earlier compared with LED SL and the other PL treatments.