Search Results

You are looking at 31 - 40 of 69 items for

  • Author or Editor: G. Lopez x
  • Refine by Access: All x
Clear All Modify Search
Free access

Joshua R. Gerovac, Roberto G. Lopez, and Neil S. Mattson

Commercial bedding plant production in northern latitudes often begins in late winter and continues through spring, when average outdoor temperatures require growers to actively heat their greenhouses (GHs). High tunnels (HTs) offer energy savings as they are passively heated and cooled structures that have a low initial cost. As a result, they have been used in northern latitudes to advance and extend the growing season and improve the quality of high-value horticultural crops. However, there is limited published information on growing bedding plants in HTs in northern latitudes. Our objectives were to quantify the effects of transplant date in an HT with or without a rowcover (RC) compared with a traditional heated GH on the growth and morphology of three cold-tolerant bedding plant species at two northern latitude locations, Purdue University (Purdue) and Cornell University (Cornell). Seedlings of snapdragon (Antirrhinum majus L. ‘Liberty Classic Yellow’), dianthus (Dianthus chinensis L. ‘Telstar Crimson’), and petunia (Petunia ×hybrida Vilm.-Andr. ‘Wave Pink’) were transplanted on weeks 13, 14, and 15 in 2012 (Purdue) and 2013 (both locations) and moved to either a glass-glazed GH or an HT without (HT) or with a rowcover (HT+RC). Several quality measurements increased when plants were grown in the HT compared with those grown in the GH. Dianthus and petunia transplanted at Purdue during week 13 in the HT and HT+RC were 33% and 47% shorter and had 51% and 31% more visible buds, respectively, compared with those grown in the GH. Similarly, petunia transplanted at Cornell during week 13 in the HT and HT+RC were 45% and 43% shorter, respectively, than their GH counterparts. The shoot dry mass of dianthus and snapdragon at Purdue was significantly higher when grown in the HT compared with the GH, regardless of transplant week or the use of RC likely because of increased daily light integral (DLI) in the HT environment. There was about a 1-week delay from transplant to first open flower for week 13 dianthus (at Purdue) and petunia (at both locations) when finished in the HT or HT+RC vs. their GH counterparts. Such a delay would be acceptable to growers who want to reduce the use of chemical growth regulators and heating costs. However, at both locations snapdragon transplanted on week 13 to the HT or HT+RC environments were delayed by 22 to 26 days compared with the GH. A delay of over 3 weeks could interfere with a grower’s production schedule, possibly making this crop unsuitable for production in northern latitude HTs.

Free access

César Guzmán-Loza, J. Farías-Larios, and J.G. López-Aguirre

Use of arbuscular mycorrhizal fungi (MA) on horticultural plant production has great potential as a biotechnological alternative; however, information on its effects on the early growth phase of honeydew melon is lacking. Nevertheless, it would seem that inoculation at the time of sowing would decrease the stress of transplant, improve root vigor, make plants grow faster, improve drought resistance, and lessen the effect of roots diseases. In this study, we evaluated the effects of inoculating honeydew melon seedlings with two commercial formulations of MA fungi at different study times in an effort to select for higher resistance and infective capacity. `Moonshine' hybrid melon seeds were sown in trials with 200 cavities containing specific doses of inoculate: 0, 100, 200, 250, 500, and 1000 cc/trial of BuRIZE, Mycorrhiza NES. A factorial design was used (formulations and study times) with a randomized distribution and four replications. Four destructive samples were taken at 10, 15, 20, and 25 days after inoculations. Number of leaves, shoot fresh weight, dry weight, root fresh weight, foliar area, and mycorrhizal colonization were recorded. Results obtained showed a highly significant effect between commercial formulations and study times and an interaction of both factors to studied variables. Mycorrhizal colonization percentages were too low (0.3% to 1.7%). At 20 days after inoculations, it was possible to see all the components of functional arbuscular mycorrhizal symbiosis on melon plants roots. Using commercial formulations of mycorrhizal fungi decreased applications of fertilizers in melon plants.

Free access

Veronica A. Hutchinson, Christopher J. Currey, and Roberto G. Lopez

Vegetatively propagated bedding plants are produced during the late winter and early spring when outdoor photosynthetic daily light integral (DLI) is low, especially in northern latitudes. Our objective was to quantify how propagation DLI influences subsequent growth and development of annual bedding plants. Cuttings of Angelonia angustifolia Benth. ‘AngelMist White Cloud’, Nemesia fruticans (Thunb.) Benth. ‘Aromatica Royal’, Osteospermum ecklonis (DC.) Norl. ‘Voltage Yellow’, and Verbena ×hybrida Ruiz ‘Aztec Violet’ were harvested and propagated in a glass-glazed greenhouse. After callusing (≈5 mol·m−2·d−1 for 7 days), cuttings of each species were placed under one of three different fixed-woven shadecloths providing ≈38%, 61%, or 86% shade or no shade with 16 h of supplemental light for 14 days. Rooted cuttings were then transplanted into 11-cm containers and grown in a common greenhouse of 21 ± 1 °C and DLI of ≈12 mol·m−2·d−1 to identify any residual effects on subsequent growth and development during the finish stage. As DLI during propagation increased, time to first open flower decreased for Angelonia, Nemesia, Osteospermum, and Verbena. For example, time to flower for Angelonia and Osteospermum was hastened by 23 and 19 days, respectively, as DLI during propagation increased from 1.2 to 12.3 mol·m−2·d−1. Our research can be used to predict growth and flowering under varying propagation DLIs for the cultivars of Angelonia, Nemesia, Osteospermum, and Verbena in the study.

Open access

Joshua K. Craver, Krishna S. Nemali, and Roberto G. Lopez

Indoor production of bedding plant seedlings using sole-source radiation may present value in increasing uniformity and consistency compared with greenhouse production. However, information on physiological acclimation related to growth and photosynthesis in seedlings exposed to high-intensity blue radiation and elevated CO2 is limited. Seedlings of petunia (Petunia ×hybrida) ‘Dreams Midnight’ were exposed to red (peak = 660 nm):blue (peak = 451 nm) radiation ratios of 50:50 (R50:B50) or 90:10 (R90:B10) and radiation intensities of 150 or 300 µmol·m−2·s–1 under two CO2 regimes of 450 or 900 µmol·mol–1. Shoot dry mass (SDM), leaf area index (LAI), internode length, and whole-plant photosynthesis and light-use efficiency (LUE) responses to increasing radiation intensity were measured. In addition, leaf photosynthetic rate (A) was measured at ambient and supra-optimal CO2 concentrations for plants grown under 450 µmol·mol–1 CO2. Our results indicated growth (based on SDM, LAI, and internode length) was lowered for seedlings produced under R50:B50 compared with R90:B10. However, we observed an increase in whole-plant light-saturated photosynthesis (Ag,max) and whole-plant light saturation point (LSP) under R50:B50 compared with R90:B10. In addition, we observed lower LUE below and higher LUE above a radiation intensity of 500 µmol·m−2·s–1 in seedlings grown under R50:B50 compared with R90:B10. Based on our results, seedling growth was lowered under a high proportion of blue radiation mainly due to lower radiation interception (due to lower LAI and shorter internode length) and LUE of intercepted radiation at the intensities used. Higher Ag,max and LSP in R50:B50 compared with R90:B10 under higher radiation intensities was likely in part due to higher LUE. Further investigation revealed A was higher at both optimal and supra-optimal CO2 concentrations under R50:B50 compared with R90:B10, indicating a lack of stomatal effects of a higher proportion of blue radiation on carboxylation and LUE. We hypothesize that higher LUE in R50:B50 compared with R90:B10 under higher radiation intensities is due to improved photochemical quenching from increased biosynthesis of carotenoids and anthocyanins. The results from our study generated fundamental information on growth and photosynthetic responses to excess blue radiation, data that can be further used in optimizing plant production in controlled environments.

Free access

Christopher J. Currey, Veronica A. Hutchinson, and Roberto G. Lopez

Cuttings of herbaceous annual bedding plants must be rooted in late winter and early spring when ambient outdoor photosynthetic daily light integrals (DLIs) are at seasonally low levels. We evaluated the effect of DLI during root development on growth, morphology, and quality of nine popular vegetatively propagated annual bedding plant species. Cuttings of Angelonia angustifolia Benth. ‘AngelMist White Cloud’, Argyranthemum frutescens (L.) Sch. Bip. ‘Madeira Cherry Red’, Diascia barberae Hook. f. ‘Wink Coral’, Lantana camara L. ‘Lucky Gold’, Nemesia fruticans (Thunb.) Benth. ‘Aromatica Royal’, Osteospermum ecklonis (DC.) Norl. ‘Voltage Yellow’, Scaevola L. hybrid ‘Blue Print’, Sutera cordata Roth. ‘Abunda Giant White’, and Verbena Ruiz ×hybrida ‘Aztec Violet’ were harvested and propagated in a glass-glazed greenhouse with 23 °C air and substrate temperature set points. After callusing (≈5 mol·m−2·d−1 for 7 days), cuttings of each species were placed under one of three different fixed-woven shade cloths providing ≈38%, 61%, or 86% shade or no shade with 16 h of supplemental light for 14 days. There were no clear trends across species for stem length in response to DLI. Stem caliper of Argyranthemum, Diascia, and Nemesia increased by 35%, 119%, and 89%, respectively, as DLI increased from 1.2 to 12.3 mol·m−2·d−1. Depending on species, total, shoot, and root dry mass increased by 64% to 465%, 50% to 384%, and 156% to 1137%, respectively, as DLI increased from 1.2 to 12.3 mol·m−2·d−1. The quality index, an objective, integrated, and quantitative measurement of rooted cutting quality, increased for all species by 176% to 858% as DLI increased from 1.2 to 12.3 mol·m−2·d−1. Our results indicate that providing a DLI of ≈8 to 12 mol·m−2·d−1 after callusing increases both growth and quality of rooted cuttings.

Free access

Diane M. Camberato, James J. Camberato, and Roberto G. Lopez

Four complete water-soluble fertilizer (WSF) formulations including micronutrients applied at 200 mg·L−1 nitrogen (N) at each irrigation [Peters Excel (21N–2.2P–16.5K), Daniels (10N–1.8P–2.5K), Peters Professional (15N–1.3P–20.8K), and Jack’s Professional (20N–1.3P–15.7K)] were compared with two controlled-release fertilizer (CRF) products (also containing micronutrients) substrate incorporated at transplant at a rate of 3000 g·m−3 of substrate [Osmocote Plus (15N–4P–9.9K, 90 to 120 days longevity at 21 °C) and Osmocote Bloom (12N–3.1P–15K, 60 to 90 days longevity at 21 °C)] in the greenhouse production of four commonly produced bedding plant species with high alkalinity irrigation water (pH 7.1, 280 mg·L−1 CaCO3 equivalent). Species included Argyranthemum frutescens (L.) Sch. Bip. ‘Madeira Cherry Red’ and iron-inefficient Calibrachoa Cerv. hybrid ‘Cabaret Pink Hot’, Diascia barberae Hook. f. ‘Wink Coral’, and Sutera cordata Roth ‘Abunda Giant White’. Additional treatments included a combination of 100 mg·L−1 Excel and 2100 g·m−3 Osmocote Plus and an Osmocote Plus treatment irrigated with reduced alkalinity water (acidified to pH 6.3, 92 mg·L−1 CaCO3 equivalent). Bedding plants were evaluated at the end of a finish or market stage (3 or 5 weeks depending on species) for shoot dry mass (SDM) and root dry mass (RDM), tissue nutrient concentrations, and visual quality rating (0 to 4). At 3 weeks, there were no significant differences in SDM and RDM between fertilizer treatments for any of the four species. Shoot dry mass significantly increased at 5 weeks in the WSF and combination treatments over the three CRF only treatments for Argyranthemum and over the non-acidified Osmocote Plus treatment only for Calibrachoa. At finish, 3 weeks for Sutera and Diascia and 5 weeks for Argyranthemum and Calibrachoa, visual quality rating for all species was lowest when using Osmocote Plus with or without acidified irrigation water compared with the WSF treatments, except the Daniels treatment in Argyranthemum, which also resulted in a low visual quality rating. Leaf tissue N for all species and phosphorus (P) for all except Diascia were below the recommended range for bedding plant crops in the CRF treatments, which was reflected by the lower substrate electrical conductivity (EC) for the CRF alone and combination treatments. Leaf tissue N and P were related to visual quality rating for all species, leaf tissue potassium (K) for Argyranthemum and Calibrachoa only, and leaf tissue iron (Fe) for Diascia only.

Free access

Michael A. Ortiz, Krystyna Hyrczyk, and Roberto G. Lopez

The U.S. specialty cut flower market has grown over the last several years because stems of many specialty cut flower species cannot be transported long distances and therefore need to be grown regionally. High tunnel production of cut flowers is an alternative to field and greenhouse production that has several benefits. Specialty cut flower species Antirrhinum majus L. ‘Potomac Orange’ and ‘Rocket Red’, Celosia argentea L. var. cristata Kuntze ‘Chief Red’, Dahlia ×hybrida Cav. ‘Karma Thalia Dark Fuchsia’, Dianthus barbatus L. ‘Amazon Neon Cherry’, Eustoma russellianum Salisb. ‘Mariachi Blue’, Helianthus annuus L. ‘Premier Lemon’ and ‘Sunrich Yellow’, Matthiola incana (L.) W.T. Aiton ‘Katz Lavender Blue’, and Zinnia elegans Jacq. ‘Benary Giant Scarlet’ were grown in both field and high tunnel environments in the midwestern United States. High tunnel production resulted in a first week’s harvest of 44.8 (46%), 115, and 21.1 (110%) more stems for Antirrhinum ‘Rocket Red’, Dianthus, and Zinnia, respectively. Compared with field production, high tunnel production yielded a greater number of stems/m2 for Antirrhinum ‘Potomac Orange’, Celosia, Dianthus, and Zinnia and longer stems for Antirrhinum ‘Potomac Orange’ and ‘Rocket’, Eustoma, Matthiola, and Zinnia. For example, high tunnel production yielded 185 (39%) and 192 (59%) more stems/m2 and 12.6 (34%) and 8.9 (32%) cm longer stems for Mathiola and Zinnia, respectively. Other stem characteristics such as inflorescence length and flower width showed more variation among cultivars. Our results indicate that cut flower yield and/or quality of Antirrhinum ‘Rocket Red’, Dianthus, Matthiola, Zinnia, Dahlia, Eustoma, and Helianthus ‘Sunrich Yellow’ and ‘Premier Lemon’ significantly increases when produced in high tunnels located in the Midwest.

Full access

Kellie J. Walters, Allison A. Hurt, and Roberto G. Lopez

Foliage annuals are primarily grown for the aesthetic appeal of their brightly colored, variegated, or patterned leaves rather than for their flowers. Once foliage annuals become reproductive, vegetative growth of many species diminishes or completely ceases and plants can become unappealing. Therefore, the objectives of this study were to quantify how growth and development during production and stock plant cutting yield of bloodleaf (Iresine herbstii), Joseph’s coat (Alternanthera sp.) ‘Brazilian Red Hots’ and ‘Red Threads’, Persian shield (Strobilanthes dyerianus), and variegated potato vine (Solanum jasminoides) are influenced by photoperiod and night interruption (NI) lighting with or without far-red (FR) radiation. Photoperiods consisted of a 9-hour short day (SD) or a 9-hour SD extended to 10, 12, 13, 14, or 16 hours with red (R):white (W):FR light-emitting diode (LED) lamps (R:FR = 0.8) providing a total photon flux density (TPFD) of ≈2 µmol·m−2·s–1 of radiation. In addition, two treatments consisted of a 9-hour SD with a 4-hour NI from lamps containing the same R:W:FR or R:W LEDs (R:FR = 37.4). Bloodleaf plant and Joseph’s coat ‘Brazilian Red Hots’ and ‘Red Threads’ developed inflorescences or flowers under photoperiods ≤12 to 13 hours and were classified as obligate SD plants. Under LEDs providing R:W:FR radiation, stem elongation of reproductive bloodleaf and Joseph’s coat ‘Brazilian Red Hots’ and ‘Red Threads’ increased as photoperiod increased from 9 to 12 hours. In addition, stem elongation of bloodleaf, Joseph’s coat ‘Brazilian Red Hots’ and ‘Red Threads’, and Persian shield and growth index (GI = {plant height + [(diameter 1 + diameter 2)/2]}/2) of bloodleaf and Persian shield was significantly greater under NI with FR radiation than without FR radiation. Fewer or no cuttings were harvested from Joseph’s coat ‘Brazilian Red Hots’ and ‘Red Threads’ under photoperiods ≤12 or ≤13 hours, respectively. To prevent unwanted flowering of bloodleaf plant and Joseph’s coat, a photoperiod ≥14 hours or 4-hour NI must be maintained with LEDs providing either R:W or R:W:FR radiation, however; stem elongation is significantly reduced under R:W LEDs.

Free access

Joshua K. Craver, Jennifer K. Boldt, and Roberto G. Lopez

High-quality young plant production in northern latitudes requires supplemental lighting (SL) to achieve a recommended daily light integral (DLI) of 10 to 12 mol·m−2·d−1. High-pressure sodium (HPS) lamps have been the industry standard for providing SL in greenhouses. However, high-intensity light-emitting diode (LED) fixtures providing blue, white, red, and/or far-red radiation have recently emerged as a possible alternative to HPS lamps for greenhouse SL. Therefore, the objectives of this study were to 1) quantify the morphology and nutrient concentration of common and specialty bedding plant seedlings grown under no SL, or SL from HPS lamps or LED fixtures; and 2) determine whether SL source during propagation or finishing influences finished plant quality or flowering. The experiment was conducted at a commercial greenhouse in West Lafayette, IN. Seeds of New Guinea impatiens (Impatiens hawkeri ‘Divine Blue Pearl’), French marigold (Tagetes patula ‘Bonanza Deep Orange’), gerbera (Gerbera jamesonii ‘Terracotta’), petunia (Petunia ×hybrida ‘Single Dreams White’), ornamental millet (Pennisetum glaucum ‘Jester’), pepper (Capsicum annuum ‘Hot Long Red Thin Cayenne’), and zinnia (Zinnia elegans ‘Zahara Fire’) were sown in 128-cell trays. On germination, trays were placed in a double-poly greenhouse under a 16-hour photoperiod of ambient solar radiation and photoperiodic lighting from compact fluorescent lamps providing a photosynthetic photon flux density (PPFD) of 2 µmol·m−2·s−1 (ambient conditions) or SL from either HPS lamps or LED fixtures providing a PPFD of 70 µmol·m−2·s−1. After propagation, seedlings were transplanted and finished under SL provided by the same HPS lamps or LED fixtures in a separate greenhouse environment. Overall, seedlings produced under SL were of greater quality [larger stem caliper, increased number of nodes, lower leaf area ratio (LAR), and greater dry mass accumulation] than those produced under no SL. However, seedlings produced under HPS or LED SL were comparable in quality. Although nutrient concentrations were greatest under ambient conditions, select macro- and micronutrient concentrations also were greater under HPS compared with LED SL. SL source during propagation and finishing had little effect on flowering and finished plant quality. Although these results indicate little difference in plant quality based on SL source, they further confirm the benefits gained from using SL for bedding plant production. In addition, with both SL sources producing a similar finished product, growers can prioritize other factors related to SL installations such as energy savings, fixture price, and fixture lifespan.

Free access

W. Garrett Owen, Qingwu Meng, and Roberto G. Lopez

Under natural short days, growers can use photoperiodic lighting to promote flowering of long-day plants and inhibit flowering of short-day plants. Unlike traditional lamps used for photoperiodic lighting, low-intensity light-emitting diode (LED) lamps allow for a wide array of adjustable spectral distributions relevant to regulation of flowering, including red (R) and white (W) radiation with or without far-red (FR) radiation. Our objective was to quantify how day-extension (DE) photoperiodic lighting from two commercially available low-intensity LED lamps emitting R + W or R + W + FR radiation interacted with daily light integral (DLI) to influence stem elongation and flowering of several ornamental species. Long-day plants [petunia (Petunia ×hybrida Vilm.-Andr. ‘Dreams Midnight’) and snapdragon (Antirrhinum majus L. ‘Oh Snap Pink’)], short-day plants [african marigold (Tagetes erecta L. ‘Moonsong Deep Orange’) and potted sunflower (Helianthus annuus L. ‘Pacino Gold’)], and day-neutral plants [pansy (Viola ×wittrockiana Gams. ‘Matrix Yellow’) and zinnia (Zinnia elegans Jacq. ‘Magellan Cherry’)] were grown at 20/18 °C day/night air temperatures and under low (6–9 mol·m−2·d−1) or high (16–19 mol·m−2·d−1) seasonal photosynthetic DLIs from ambient solar radiation combined with supplemental high-pressure sodium lighting and DE LED lighting. Photoperiods consisted of a truncated 9-hour day (0800–1700 hr) with additional 1-hour (1700–1800 hr, 10 hours total), 4-hour (1700–2100 hr, 13 hours total), or 7-hour (1700–2400 hr, 16 hours total) R + W or R + W + FR LED lighting at 2 μmol·m−2·s−1. Days to visible bud, plant height at first open flower, and time to first open flower (TTF) of each species were influenced by DLI, lamp type, and photoperiod though to different magnitudes. For example, plant height of african marigold and potted sunflower at first open flower was greatest under R + W + FR lamps, high DLIs, and 16-hour photoperiods. Petunia grown under R + W lamps, high DLI, and 10- and 13-hour photoperiods were the most compact. For all species, TTF was generally reduced under high DLIs. For example, regardless of the lamp type, flowering of african marigold occurred fastest under a high DLI and 10-hour photoperiod. Flowering of petunia and snapdragon occurred fastest under a high DLI, R + W + FR lamps, and a 16-hour photoperiod. However, only under high DLIs, R + W or R + W + FR lamps were equally effective at promoting flowering when used to provide DE lighting. Our data suggest that under low DLIs, flowering of long-day plants (petunia and snapdragon) occurs more rapidly under lamps providing R + W + FR, whereas under high DLIs, flowering is promoted similarly under either R + W or R + W + FR lamps.