Search Results

You are looking at 31 - 40 of 49 items for

  • Author or Editor: Fumiomi Takeda x
Clear All Modify Search

Hydathodes of young, folded strawberry (Fragaria × ananassa Duch.) leaves had unoccluded water pores With various sized apertures, as observed by low-temperature scanning electron microscopy. Hydathodes of fully expanded leaves were brownish and the water pores within the hydathodes were covered with a solid material, presumably comprised of epicuticular waxes and substances excreted through the hydathodes. The entire water pore area of the hydathode was occasionally covered with a shield-like plate. The shield-like plate over the hydathode water pores impeded water flow even with an induced positive pressure. Mechanical scraping of the hydathode area eliminated impedance to water conduction. These observations suggest that external occlusion of water pores in the hydathodes is the resistance component associated with the absence of guttation in older strawberry leaves.

Free access

`Hull Thornless' and `Black Satin' blackberry (Rubus spp.) canes were collected from Sept. 1989 through Mar. 1990 to determine the hardiness and supercooling characteristics of buds at various stages of development. Anatomical studies were also conducted to examine the location of ice voids in buds frozen to -5 or -30C. Differentiation of the terminal flower occurred in `Black Satin' buds by 6 Nov., whereas `Hull Thornless' buds remained vegetative until early spring. As many as nine floral primordia were observed in both cultivars by 12 Mar. The hardiness of the two cultivars was similar until February. Thereafter, `Black Satin' buds were more susceptible to cold injury than those of `Hull Thornless'. Flora1 and undifferentiated buds of both cultivars exhibited one to four low temperature exotherms (LTEs) from 9 Oct. to 12 Mar. in differential thermal analysis (DTA) experiments. The stage of flora1 development did not influence the bud's capacity to supercool. The number of LTEs was not related to the stage of floral development or to the number of floral primordia. Extracellular voids resulting from ice formation in the bud axis and scales were observed in samples subjected to -5 or -30C.

Free access

Transition to reproductive development and subsequent development of floral primordia (e.g., sepals, petals, stamens, and pistils) were determined in several blackberry (Rubus subgenus Rubus Watson) cultivars (Boysen, Cherokee, Chester Thornless, Marion, and Thornless Evergreen) growing in one or more locations (Clarksville, Ark., Aurora and Hillsboro, Ore., and Kearneysville, W. Va.). Also, daily maximum, mean, and minimum temperatures were recorded at three sites (Clarksville, Aurora, and Kearneysville) for the September to April sampling period. In buds of `Boysen' and `Marion' from Oregon, sepal primordia were first observed in November and December, respectively. Further floral bud development continued into January. Sepal development in `Cherokee' buds occurred in October in Oregon and in December in Arkansas. At all three sites, the buds of `Chester Thornless' blackberry remained undifferentiated until spring. The average mean temperatures in Oregon were generally well above 5 °C during the bud sampling period, but were near 0 °C on most days from mid-December to January in Arkansas and from December to late-February in West Virginia. The phenology of flower bud differentiation varied among the cultivars and was strongly influenced by prevailing winter temperatures. The results suggest that the shortening day lengths of late summer trigger flower bud development in blackberry. Floral bud development in blackberry, once initiated, was continuous; however, periods of low temperature (<2 °C) can arrest development.

Free access

A study was conducted to characterize vegetative growth of mature 'Chester Thornless' blackberry plants trained to the rotatable cross-arm (RCA) trellis in which up to six primocanes were retained. Cane emergence occurred from mid-April to late-May. The first (oldest) primocane attained a sufficient height to be trained in early May in 40% of plants, but younger primocanes could not be trained until late July. However, only 94%, 73%, 60%, and 42% of plants developed three, four, five, and six primocanes, respectively. In primocanes that were trained from 14 May to 3 June, eight or nine medium (0.7-1.3 m) to long (>1.3 m) lateral branches developed. Primocanes tied from 4 June to 16 July averaged less than six lateral branches that were mostly of medium and short (<0.7 m) categories. Primocanes trained after 16 July produced only two short lateral branches. The results indicated that training primocanes from mid-May to mid-June for 'Chester Thornless' blackberry on the RCA trellis would be advantageous to minimize labor costs.

Free access

Mature 'Chester Thornless' blackberry plants were trained to the rotatable cross-arm (RCA) trellis to determine the effect of retaining two, four, or six primocanes on plant productivity. Retention of only the two oldest primocanes and generally the most vigorous primocanes per plant yielded 14.1 kg of fruit compared to 17.1 kg per plant in which as many as six primocanes were retained. Increasing the number of canes did not result in significant yield increase (P = 0.09) because the primocanes trained in late-June and July produced only a few, and, in some cases, no lateral branches. Thus, retaining only those canes that become trainable early in the season decreased labor inputs and allowed primocane training to be completed prior to the onset of harvest. As a result, the effort to train and retain only those primocanes that reach the trainable height before mid-June may be advantageous to minimize labor costs, but will not effect plant productivity.

Free access

Strawberry (`Chandler') plants were grown in a greenhouse hydroponic culture system from 28 Apr. to 20 July to produce runners (stolons) with several daughter plants. By mid-July, each `Chandler' plant had developed about 30 daughter plants on 12 runners with 1 to 6 daughter plants on each runner. Daughter plants varied in weight from <0.9 to >10 g. Daughter plant weight and position on the runner affected new root development on plug plants during the first 7 days under mist irrigation. At 3 weeks, 87% of daughter plants that weighed <0.9 g and at least 96% of daughter plants that weighed >1.0 g were rated acceptable for field transplanting, respectively. The percentage of daughter plants from second to tenth node position that were rated acceptable for field planting ranged from 98% to 88%, respectively. Runner production in the fall was not affected by either position on the runner or weight at the time of daughter plant harvest. But, larger daughter plants produced more branch crowns than did smaller daughter plants in the fall. Transplant survival in the field was 100%. In the spring, `Chandler' plants produced a 10% greater yield from daughter plants that weighed 9.9 g compared to those that weighed only 0.9 g.

Free access

Fresh strawberries (Fragaria ×ananassa Duch) are readily available throughout the year with several new cultivars being successfully grown in diverse environmental conditions (e.g., field and greenhouse). Consumption of strawberries with higher nutritive values and antioxidant activity may contribute to improved human wellness. Phytonutrient contents and antioxidant activity was measured as oxygen radical absorbance capacity (ORAC) were assayed in berries (`Camarosa', `Diamante', and `Gaviota') sampled in January, February to March, and April to May from fields in Plant City, Fla., and Oxnard, Calif., and from a greenhouse in Kearneysville, WV. Strawberry cultivars varied in skin color, soluble solids, total phenolics, and anthocyanins, ascorbic acid, folic acid, and ORAC activity. Response to environment was cultivar dependent. All phytonutrient constituents were lower in `Diamante' berries compared to `Camarosa' and `Gaviota'. For all cultivars, berry ORAC activity declined as TSS increased, and ORAC activity was coincident with phenolic content. ORAC activity in berries fruit harvested from plants grown in a temperature-controlled greenhouse did not change during the January to May sampling period. For `Gaviota', ORAC activity in greenhouse-produced berries was the same as that of field-produced berries. Whereas greenhouse vs. field-gown `Camarosa' and `Diamante' berries ORAC was higher and lower respectively. These findings demonstrate that the environmental conditions in greenhouses in Kearneysville, W.Va., from winter to spring are adequate for `Camarosa' and `Gaviota' color development, but not for `Diamante' strawberries. Of the three cultivars, only `Camarosa' was highly productive (1.2 kg berries per plant), even in the greenhouse. Berries were high in ascorbic acid, folic acid, phenolic acid, anthocyanins, and ORAC activity.

Free access

July-plugged transplants of short-day cv. Strawberry Festival (Fragaria ×ananassa) flowered in October and November although they were grown under long photoperiods and warm temperatures (greater than 21 °C) in July and August. These unexpected results were attributed to a high plant density (320 transplants/m2) that provided continuous and heavy leaf cover, which eliminated red light (less than 700 nm) from reaching the crowns. This hypothesis was tested by illuminating crowns of transplants growing in 50-cell packs for 16 h·d−1 with red light-emitting diode lamps (maximum wavelength at 639 nm and 80% of output between 617 and 655 nm). Red light treatment caused a significant reduction in fall flowering. It is proposed that a high ratio of far-red light to visible light reaching the crown will play a role in floral bud induction, possibly as early as mid-August. Transplants of some short-day cultivars started as plug plants in early July have the capacity to flower and fruit in the fall and the next spring, enabling growers in the mid-Atlantic coast region to obtain two harvests within 1 year from a single planting.

Free access

‘Navaho’ and ‘Apache’ blackberry plants were maintained at 10, 15, 20, 25, 30, or 35 °C in growth chambers to determine optimum temperature for budbreak and flowering (fewest days to flowering). In a separate experiment, bloom dates were observed for a collection of 117 Rubus genotypes over four seasons. Using these phenological data, predictive linear and curvilinear models were tested using a range of cardinal temperatures. The growth chamber experiment indicated optimum temperatures for bloom were 25.6 °C for ‘Apache’ and 29.2 °C for ‘Navaho’. For the field observations, time to bloom was best defined by a linear model with base and optimum temperatures of 6 and 25 °C and a curvilinear model defined by base and optimum temperatures of 4 and 27 °C, respectively. Based on the linear growing degree hour (GDH) model, heat units to bloom varied among cultivars in the collection from 9,200 GDH for ‘Chickasaw’ to 18,900 GDH for ‘Merton Thornless’.

Free access