Search Results

You are looking at 31 - 40 of 50 items for

  • Author or Editor: Christopher S. Cramer x
  • Refine by Access: All x
Clear All Modify Search
Free access

Christopher S. Cramer and Joe N. Corgan

Free access

Christopher S. Cramer and Mark P. Bridgen

Mussaenda, a tropical, hybrid ornamental plant from India and the Philippines, is being evaluated as a potential greenhouse ported crop in the united States. Showy sepals of white, picotee (White with rosy edges), light pink, dark pink, or red complemented by fragrant, yellow flowers and dark green, pubescent foliage make Mussaenda a very attractive potted plant. However, sometimes the height of Mussaenda is unsuitable for pot plant culture. With the use of chemical growth regulators. plant height is reduced thus making Mussaenda a more feasible potted crop.

In the summer of 1992, a growth regulator study was conducted to evaluate three growth regulators and concentrations capable of reducing plant height in Mussaenda. Daminozide (B-Nine SP), ancymidol (A-Rest), or paclobutrazol (Bonzi) was applied at two concentrations each. Daminozide was tested as a spray at 2500 ppm and 5000 ppm. Ancymidol was applied as a spray at 33 ppm and 66 ppm or as a drench at 0.25 mg/pot and 0.50 mg/pot. Paclobutrazol was tested as a spray at 25 ppm and 50 ppm or as a drench at 0.125 mg/pot and 0.25 mg/pot. Growth regulators were applied as a single application or a double application with two weeks separating applications.

Daminozide at 2500 ppm and 5000 ppm was most effective in controlling plant height. Ancymidol as a drench at 0.25 mg/pot and 0.50 mg/pot was also effective in plant height control. Two applications of these growth regulators were more effective in controlling plant height than a single application.

Free access

Christopher S. Cramer and Todd C. Wehner

Currently, both hybrid and inbred pickling cucumber cultivars are being grown commercially in the United States. Heterosis for yield in pickling cucumber has been previously reported. However, heterosis has not been repeatable in other studies. The objective of this study was to determine the existence of heterosis and inbreeding depression for yield in pickling cucumber. Six pickling cucumber inbreds (`Addis', `Clinton', M 12, M 20, `Tiny Dill', `Wisconsin SMR 18') were hybridized to form four F1 hybrid families (`Addis × M 20, `Addis' × `Wis. SMR 18', `Clinton' × M 12, M 20 × `Tiny Dill'). Within each family, F2, BC1A and BC1B generations were also formed. Thirty plants of each generation within each family were grown in 3.1-m plots for four replications in the spring and summer seasons of 1996 at the Horticultural Crops Research Station in Clinton, N.C. Data were collected at once-over harvest for total, marketable, and early yield in terms of number (1000 fruit/ha) and weight (Mg/ha). In addition to yield, a fruit shape rating was collected for each plot. High parent heterosis for yield (total and marketable fruit weight) was only observed for `Addis' × `SMR 18' grown in the summer season. The three other families did not exhibit heterosis for total, marketable, and early yield. Heterosis for shape rating was not observed for any family. `Addis' × `Wis. SMR 18' also exhibited inbreeding depression for total fruit weight, marketable fruit weight, early fruit number, and early fruit weight during the spring season and for marketable fruit number and marketable fruit weight during the summer season.

Free access

Christopher S. Cramer and Todd C. Wehner

The combining ability (hybrid performance) of breeding lines is often determined to measure selection progress for yield. Plant breeders utilize this information to develop breeding lines with higher combining ability. The objectives of this study were to measure the specific combining ability for yield traits over three selection cycles from four pickling cucumber populations with Gy 14, a popular pickling cucumber inbred; and to determine the change in specific combining ability for yield traits in four populations improved through recurrent selection. Four pickling cucumber populations, North Carolina wide base pickle (NCWBP), medium base pickle (NCMBP), elite pickle 1 (NCEP1), and hardwickii 1 (NCH1), were developed and improved through modified half-sib selection from 1983 to 1992 to improve yield per se and fruit quality in each population. Eleven families were randomly selected from each of 3 selection cycles (early, intermediate, advanced) from each populations and were hybridized to Gy 14. Plants were sprayed with Paraquat to defoliate them and to simulate once-over harvest. The experiment was a randomized complete-block design with 22 replications per population arranged in a split plot with the four populations as whole plots and the three cycles as subplots. The combining ability for fruit quality rating of NCWBP and NCMBP increased as the number of selection cycles increased. Conversely, selection for higher yield per se decreased the combining ability of the NCEP1 population for improved fruit quality. In most instances, the combining ability of each population exhibited a constant response over selection cycles for each measured yield trait.

Free access

Jessica A. Gutierrez and Christopher S. Cramer

Fusarium basal rot (FBR), caused by Fusarium oxysporum Schlechtend.:Fr. f. sp. cepae (H.N. Hans.) W.C. Snyder & H.N. Hans, is a soilborne fungal disease that affects bulb onions (Allium cepa L.) worldwide. Short-day onion cultivars that are resistant to FBR are lacking. The goal of this project was to screen fall-sown onion germplasm for FBR resistance using a mature bulb field screening at harvest and after 4 weeks in storage. The project was conducted for 2 years, and in each year, 26 fall-sown onion lines were grown in a field known to produce a high incidence of fusarium-basal-rot-infected bulbs. When all the bulbs in a plot were mature, the basal plates of 20 bulbs were cut transversely and each plate was rated for disease severity on a scale of one (no diseased tissue) to nine (70% or more diseased). Bulbs were stored and rerated at 2 and 4 weeks after harvest. Disease severity and incidence were higher in the first year than in the second year. Both severity and incidence increased as bulbs were stored for 4 weeks. NMSU 00-25 exhibited the lowest disease severity and incidence in both years at harvest time and after storage. `Buffalo' and `Cardinal' exhibited the highest severities and incidences across both years and at harvest time and after storage. Other entries exhibited high or low disease severity and incidence but not consistently across years and between harvest time and after storage. In the development of FBR resistant cultivars, breeding lines should be evaluated over multiple years and bulbs should be stored for 4 weeks before being screened.

Free access

Christopher S. Cramer and Joe N. Corgan

Free access

Christopher S. Cramer and Michael J. Havey

Free access

Christopher S. Cramer, Neel Kamal, and Narinder Singh

Iris yellow spot (IYS) disease, caused by Iris yellow spot virus (IYSV), results in irregular and diamond-shaped, chlorotic, and necrotic lesions on the leaves and seedstalks of onions (Allium cepa L.). These lesions reduce leaf photosynthetic area and ultimately reduce onion bulb size and yield from larger bulb classes. IYSV is vectored by onion thrips (Thrips tabaci L.) that are difficult to control under certain environmental conditions. Currently, no onion cultivar is resistant to the disease symptoms, virus, and/or thrips. Twenty-one cultivars and 17 germplasm lines were evaluated in the field for IYS disease severity and thrips densities at multiple times during the season as well as leaf color, waxiness, and axil openness of these entries. Plants were grown under conditions that favored thrips populations (high temperatures, low moisture, and no insecticidal spray applications), IYSV presence and distribution, and IYS development. Plants of New Mexico State University (NMSU) 07-10-1 had fewer thrips than several entries later in the season in both 2009 and 2010. Several entries exhibited a lower number of thrips per plant early or later in the season; however, these results were not consistent across years and were not associated with a particular foliage characteristic. Lighter leaf color and/or a lesser amount of epicuticular wax did not always result in the fewest number of thrips per plant as has been reported in the literature. Plants of NMSU 09-58 tended to exhibit fewer and less severe IYS symptoms early in the season as compared with plants of other entries.

Free access

Christopher S. Cramer and Todd C. Wehner

Progress was measured in four populations of cucumber (Cucumis sativus L.) improved by recurrent selection. The populations were the North Carolina wide base pickle (NCWBP), medium base pickle (NCMBP), elite pickle 1 (NCEP1), and hardwickii 1 (NCH1). Families from each of three cycles (early, intermediate, and late) from each population were randomly chosen and crossed with Gy 14 to produce gynoecious hybrids. Gy 14 is a gynoecious inbred used commonly as a female parent in the production of pickling cucumber hybrids. Once the plants had 10% oversized (>51 mm in diameter) fruit, plots were sprayed with paraquat to simulate once-over harvest. Selection cycles were evaluated for total, early, and marketable yield, and fruit shape. Testcross performance for fruit shape rating increased over cycles for the NCWBP and NCMBP populations when tested in either season. Testcross performance for total and early yield of the NCEP1 population tested in the spring decreased with selection, but remained constant over cycles in the summer season. The majority of yield traits in each population remained unchanged across selection cycles. Of the four populations studied, the NCMBP population had the greatest gain (7%) in testcross performance over cycles and averaged over all traits. In addition, testcross performance for fruit shape rating had the greatest gain (11%) with selection and averaged over populations. Years and seasons greatly influenced testcross performance for fruit yield and shape rating. In most instances, the fruit yield and shape of Gy 14 was higher than the testcross performance of population-cycle combinations. The performance of several families exceeded that of Gy 14 when testcross combinations were made. Those families could be selected for use in the development of elite cultivars. Chemical name used: 1,1'-dimethyl-4,4'-bipyridinium ion (paraquat).

Free access

Christopher S. Cramer and Todd C. Wehner

Increased fruit yield in slicing cucumber (Cucumis sativus L.) has been difficult to achieve since yield is quantitatively inherited with low heritability. From 1981 to 1993, four slicing cucumber populations differing in their genetic diversity (wide, medium, elite, and `Beit Alpha') were advanced through six to ten cycles of modified half-sib recurrent selection. The objectives of this research were to determine 1) the fruit yield and yield component means; 2) the correlations between yield components, between yield traits, and between components and yield; and 3) the change in means and correlations with selection for improved yield of four slicing cucumber populations. In 1994 and 1995, four families were randomly selected from three cycles (early, intermediate, and late) from each population and self-pollinated. Thirty plants from each S1 family were evaluated in 3.1-m plots in Spring and Summer 1995 and 1996 at the Horticultural Crops Research Station in Clinton, N.C. Plants were harvested and data were collected on number of branches per plant and nodes per branch, proportion of pistillate nodes, fruit set and shape, and total, early, and marketable yield. When averaged over all populations, seasons, and years, fruit yield and quality increased with selection while yield components remained unchanged with selection. Fruit yield and components differed between populations, seasons, and years. Most correlations between yield components and between yield components and fruit yield were weak, and strong correlations varied between populations, seasons, and yield components. Indirect selection of proportion of pistillate nodes has potential for improving yield for certain population-season combinations. Selection weakened many strong correlations between yield components and between yield and components. Changes in correlations often did not correspond with changes in trait means. Based on this research, selection for yield components would not be advantageous for improving fruit yield in all slicing cucumber populations. Additional yield components, yield component heritability, and better component selection methods need to be determined before component selection can be used to improve fruit yield.