Search Results

You are looking at 21 - 30 of 38 items for

  • Author or Editor: Youping Sun x
  • Refine by Access: All x
Clear All Modify Search
Open access

Ji-Jhong Chen, Shuyang Zhen, and Youping Sun

Commercial optical chlorophyll meters estimate relative chlorophyll content using the ratio of transmitted red light and near-infrared (NIR) light emitted from a red light-emitting diode (LED) and an NIR LED. Normalized difference vegetation index (NDVI) sensors have red and NIR light detectors and may be used to estimate chlorophyll content by detecting the transmitted red and NIR light through leaves. In this study, leaf chlorophyll content of ‘Torrey’ buffaloberry (Shepherdia ×utahensis) plants treated with 0 mm [zero nitrogen (N)], 2 mm (medium N), or 4 mm (ample N) ammonium nitrate for 3 weeks were evaluated using two commercial chlorophyll meters and NDVI sensors. The absolute chlorophyll content was determined using chlorophyll extraction. Our results showed that plants receiving ample N and medium N had decreased transmitted red light (i.e., greater absorption in red light). Measurements of optical chlorophyll meters, NDVI sensors, and chlorophyll extraction similarly showed that plants receiving medium N and ample N had greater leaf chlorophyll content than those receiving zero N. Relative leaf chlorophyll content estimated using NDVI sensors correlated positively with those from the chlorophyll meters (P < 0.0001; r2 range, 0.56–0.82). Therefore, our results indicate that NDVI measurements are sensitive to leaf chlorophyll content. These NDVI sensors, or specialized sensors developed using similar principles, can be used to estimate the relative chlorophyll content of nursery crops and help growers adjust fertilization to improve plant growth and nutrient status.

Free access

Renae E. Moran, Youping Sun, Fang Geng, Donglin Zhang, and Gennaro Fazio

Winter injury to the root systems of fruit trees can cause significant tree losses and yield reductions in the northern regions of the United States and Canada. To compare the root and trunk cold temperature tolerance, a series of experiments were conducted using ungrafted apple rootstocks. ‘Geneva® 11’ (G.11), ‘Geneva® 30’ (G.30), ‘Geneva® 41’ (G.41), ‘P.2’, and ‘Budagovsky 9’ (B.9) apple (Malus ×domestica Borkh.) rootstocks had root tissue hardiness similar to ‘M.26’, but ‘Geneva® 935’ (G.935) had greater cold-hardiness than M.26 when based on shoot regrowth in ungrafted trees. The LT50 of M.26 and P.2 roots ranged from –12 to –14 °C. The LT50 was –13 °C for B.9, –13.4 to –14.6 °C for G.30, and –12 °C for G.11. The LT50 of G.41 was one of the highest in one experiment, –8 °C, and one of the lowest in another, colder than –15.0 °C. The LT50 of G.935 roots was the lowest and ranged from –16 to –19 °C. Compared with M.26, trunk cold-hardiness in December was greater in B.9 and P.2 and was similar in G.30. Cold-hardiness of G.11 in December was mixed with less injury in the xylem but more injury in the phloem compared with M.26. In October, M.26 and G.935 trunks had little injury after exposure to –24 °C.

Open access

Ji Jhong Chen, Haifeng Xing, Asmita Paudel, Youping Sun, Genhua Niu, and Matthew Chappell

More than half of residential water in Utah is used for landscape irrigation. Reclaimed water has been used to irrigate urban landscapes to conserve municipal water. High salt levels in reclaimed water may pose osmotic stress and ion toxicity to salt-sensitive plants. Viburnums are commonly used landscape plants, but salinity tolerance of species and cultivars is unclear. The objective of this study was to characterize gas exchanges and mineral nutrition responses of 12 viburnum taxa subjected to salinity stress in a greenhouse study. Plants were irrigated with a nutrient solution at an electrical conductivity (EC) of 1.3 dS·m–1 or saline solution at an EC of 5.0 dS·m–1 or 10.0 dS·m–1. The net photosynthesis rate (Pn), stomatal conductance (g S), and transpiration rate (E) of all viburnum taxa, except for Viburnum ×burkwoodii and V. בNCVX1’, decreased to various degrees with increasing salinity levels. The Pn, g S, and E of V. ×burkwoodii and V. בNCVX1’ were unaffected by saline solutions of 5.0 dS·m–1 at the 4th and 9th week after treatment initiation, with the exception of the Pn of V. ×burkwoodii, which decreased at the 9th week. Leaf sodium (Na+) and chloride (Cl) concentrations of all viburnum taxa increased as salinity levels increased. Viburnum ×burkwoodii had relatively low leaf Na+ and Cl when irrigated with saline solutions of 10.0 dS·m–1. Plant growth and gas exchange parameters, including visual score, plant height, Pn, g S, E, and water use efficiency (WUE) correlated negatively with leaf Na+ and Cl concentrations. The ratio of potassium (K+) to Na+ (K+/Na+) and ratio of calcium (Ca2+) to Na+ (Ca2+/Na+) decreased when salinity levels increased. Visual score, plant height, Pn, g S, E, and WUE correlated positively with the K+/Na+ and Ca2+/Na+ ratios. These results suggest excessive Na+ and Cl accumulation inhibited plant photosynthesis and growth, and affected K+ and Ca2+ uptake negatively.

Open access

Youping Sun, Ji Jhong Chen, Haifeng Xing, Asmita Paudel, Genhua Niu, and Matthew Chappell

Viburnums are widely used in gardens and landscapes throughout the United States. Although salinity tolerance varies among plant species, research-based information is limited on the relative salt tolerance of viburnum species. The morphological and growth responses of 12 viburnum taxa to saline solution irrigation were evaluated under greenhouse conditions. Viburnum taxa included Viburnum ×burkwoodii, V. cassinoides ‘SMNVCDD’, V. dentatum ‘Christom’, V. dentatum var. deamii ‘SMVDLS’, V. dilatatum ‘Henneke’, V. בNCVX1’, V. nudum ‘Bulk’, V. opulus ‘Roseum’, V. plicatum var. tomentosum ‘Summer Snowflake’, V. pragense ‘Decker’, V. ×rhytidophylloides ‘Redell’, and V. trilobum. A nutrient solution at an electrical conductivity (EC) of 1.3 dS·m−1 (control) or saline solutions at ECs of 5.0 and 10.0 dS·m−1 were applied eight times over a 9-week period. Growth, visual quality, and morphological characteristics were quantified at the 4th week and 8th–9th week to assess the impact of salinity stress on the viburnum taxa. Saline solution irrigation imposed detrimental salinity stress on viburnum plant growth and visual quality, and the degree of salt damage was dependent on the salinity levels of irrigation solution and the length of exposure to salinity stress as well as viburnum taxa. Viburnum ×burkwoodii and V. בNCVX1’ had little foliar salt damage during the entire experiment, except those irrigated with saline solution at an EC of 10.0 dS·m−1 exhibited slight to moderate foliar salt damage at the eighth week. Viburnum dilatatum ‘Henneke’, V. plicatum var. tomentosum ‘Summer Snowflake’, and V. trilobum irrigated with saline solution at an EC of 5.0 dS·m−1 had slight and severe foliar salt damage at the 4th and 8th week, respectively. Plants irrigated with saline solution at an EC of 10.0 dS·m−1 exhibited severe foliar salt damage at the 4th week, and all died by the 8th week. Other viburnum taxa also showed various foliar salt damage, especially at an EC of 10.0 dS·m−1. The shoot dry weights of V. ×burkwoodii and V. בNCVX1’ irrigated with saline solution at ECs of 5.0 and 10.0 dS·m−1 were similar to those in the control at both harvest dates. However, the shoot dry weight of other tested viburnum taxa decreased to some extent at the 9th week. A cluster analysis concluded that V. ×burkwoodii and V. בNCVX1’ were considered the most salt-tolerant viburnum taxa, whereas V. dilatatum ‘Henneke’, V. plicatum var. tomentosum ‘Summer Snowflake’, and V. trilobum were sensitive to salinity levels used in this study. This research may guide the green industry to choose relatively tolerant viburnum taxa for landscape use and nursery production where low-quality water is used for irrigation.

Full access

Asmita Paudel, Ji Jhong Chen, Youping Sun, Yuxiang Wang, and Richard Anderson

Sego SupremeTM is a designated plant breeding and introduction program at the Utah State University Botanical Center and the Center for Water Efficient Landscaping. This plant selection program introduces native and adapted plants to the arid West for aesthetic landscaping and water conservation. The plants are evaluated for characteristics such as color, flowering, ease of propagation, market demand, disease/pest resistance, and drought tolerance. However, salt tolerance has not been considered during the evaluation processes. Four Sego SupremeTM plants [Aquilegia barnebyi (oil shale columbine), Clematis fruticosa (Mongolian gold clematis), Epilobium septentrionale (northern willowherb), and Tetraneuris acaulis var. arizonica (Arizona four-nerve daisy)] were evaluated for salt tolerance in a greenhouse. Uniform plants were irrigated weekly with a nutrient solution at an electrical conductivity (EC) of 1.25 dS·m−1 as control or a saline solution at an EC of 2.5, 5.0, 7.5, or 10.0 dS·m−1 for 8 weeks. After 8 weeks of irrigation, A. barnebyi irrigated with saline solution at an EC of 5.0 dS·m−1 had slight foliar salt damage with an average visual score of 3.7 (0 = dead; 5 = excellent), and more than 50% of the plants were dead when irrigated with saline solutions at an EC of 7.5 and 10.0 dS·m−1. However, C. fruticosa, E. septentrionale, and T. acaulis had no or minimal foliar salt damage with visual scores of 4.2, 4.1, and 4.3, respectively, when irrigated with saline solution at an EC of 10.0 dS·m−1. As the salinity levels of treatment solutions increased, plant height, leaf area, and shoot dry weight of C. fruticosa and T. acaulis decreased linearly; plant height of A. barnebyi and E. septentrionale also declined linearly, but their leaf area and shoot dry weight decreased quadratically. Compared with the control, the shoot dry weights of A. barnebyi, C. fruticosa, E. septentrionale, and T. acaulis decreased by 71.3%, 56.3%, 69.7%, and 48.1%, respectively, when irrigated with saline solution at an EC of 10.0 dS·m−1. Aquilegia barnebyi and C. fruticosa did not bloom during the experiment at all treatments. Elevated salinity reduced the number of flowers in E. septentrionale and T. acaulis. Elevated salinity also reduced the number of shoots in all four species. Among the four species, sodium (Na+) and chloride (Cl) concentration increased the most in A. barnebyi by 53 and 48 times, respectively, when irrigated with saline solution at an EC of 10.0 dS·m−1. In this study, C. fruticosa and T. acaulis had minimal foliar salt damage and less reduction in shoot dry weight, indicating that they are more tolerant to salinity. Epilobium septentrionale was moderately tolerant to saline solution irrigation with less foliar damage, although it had more reduction in shoot dry weight. On the other hand, A. barnebyi was the least tolerant with severe foliar damage, more reduction in shoot dry weight, and a greater concentration of Na+ and Cl.

Free access

Qiang Liu, Youping Sun, Genhua Niu, James Altland, Lifei Chen, and Lijuan Jiang

Because of limited supply of high-quality water, alternative water sources have been used for irrigation in water-scarce regions. However, alternative waters usually contain high salt levels, which can cause salt damage on salt-sensitive plants. A greenhouse study was conducted to evaluate the relative salt tolerance of 10 common ornamental taxa to saline water irrigation. The 10 taxa studied were Chaenomeles speciosa ‘Orange Storm’ and ‘Pink Storm’ (Chaenomeles Double Take); Diervilla rivularis ‘G2X885411’, ‘G2X88544’ (Diervilla Kodiak®, Black, Orange, and Red, respectively), and ‘Smndrsf’; Forsythia ×intermedia ‘Mindor’ (Forsythia Show Off®); Hibiscus syriacus ‘ILVOPS’ (Hibiscus Purple Satin®); Hydrangea macrophylla ‘Smhmtau’ and ‘Smnhmsigma’ (Hydrangea Let’s Dance® Blue Jangles® and Rave, respectively); and Parthenocissus quinquefolia ‘Troki’ (Parthenociss quinquefolia Red Wall®). Plants were irrigated with a nutrient solution at an electrical conductivity (EC) of 1.2 dS·m−1 (control) or saline solutions at EC of 5.0 or 10.0 dS·m−1 (EC 5 or EC 10) eight times on a weekly basis. The results indicated that the 10 ornamental taxa had different morphological and physiological responses to salinity. The C. speciosa and D. rivularis plants in EC 5 had severe salt foliar damage, whereas those in EC 10 were dead. Hibiscus syriacus ‘ILVOPS’ performed well in EC 5 treatment with a shoot dry weight (DW) reduction of 26%, but those in EC 10 had severe foliar salt damage. Hydrangea macrophylla, F. ×intermedia ‘Mindor’ and P. quinquefolia ‘Troki’ were the most salt tolerant with minor foliar salt damage. The two H. macrophylla cultivars had the highest shoot sodium (Na) and chlorine (Cl) concentrations with a visual quality of 3 (scale 0 to 5 with 0 for dead plants and 5 for excellent performance), indicating that H. macrophylla plants adapted to elevated salinity by tolerating high Na and Cl concentrations in leaf tissue. Forsythia ×intermedia ‘Mindor’ and P. quinquefolia ‘Troki’ had relatively low leaf Na and Cl concentration, indicating that both taxa are capable of excluding Na and Cl. Chaenomeles speciosa and D. rivularis were sensitive to salinity with great growth reduction, severe foliar salt damage, and high Na and Cl accumulation in leaf tissue.

Full access

Youping Sun, Genhua Niu, Christina Perez, H. Brent Pemberton, and James Altland

Marigolds (Tagetes sp.) are ornamental plants with fine-textured, dark green foliage, and yellow, orange, or bicolored flowers. The relative salt tolerance of eight marigolds [‘Discovery Orange’, ‘Discovery Yellow’, ‘Taishan Gold’, ‘Taishan Orange’, and ‘Taishan Yellow’ african marigold (Tagetes erecta); ‘Hot Pak Gold’, ‘Hot Pak Orange’, and ‘Hot Pak Yellow’ french marigold (Tagetes patula)] was evaluated in a greenhouse experiment. Plants were irrigated weekly with nutrient solution at an electrical conductivity (EC) of 1.2 dS·m−1 (control) or saline solutions at an EC of 3.0 or 6.0 dS·m−1 (EC 3 or EC 6). Marigold plants began to show foliar salt damage (leaf burn and necrosis) at 6 weeks after the initiation of treatment. At harvest (9 weeks after the initiation of treatment), ‘Discovery Orange’, ‘Discovery Yellow’, ‘Taishan Gold’, and ‘Taishan Yellow’ plants exhibited severe foliar salt damage with visual scores less than 2 (on a scale of 0 to 5, with 0 = dead and 5 = excellent with no foliar salt damage) in EC 6. In the same treatment, ‘Hot Pak Gold’ and ‘Taishan Orange’ plants all died and only one of nine ‘Hot Pak Orange’ and ‘Hot Pak Yellow’ plants survived. In EC 3, all cultivars had slight or minimal foliar salt damage with visual scores ≈4 with the exception of Taishan Gold and Taishan Orange plants that showed moderate foliar damage with a visual score of 2.3 and 2.1, respectively. Treatment EC 3 reduced the flower number of ‘Discovery Orange’, ‘Discovery Yellow’, ‘Hot Pak Gold’, and ‘Hot Pak Yellow’ by 52%, 28%, 50%, and 30%, respectively, whereas EC 6 decreased the flower number of ‘Discovery Orange’ and ‘Discovery Yellow’ by 48% and 52%, respectively. In addition, both EC 3 and EC 6 did not reduce total dry weight (DW) of any cultivars, except Hot Pak Yellow and Taishan Yellow. In conclusion, all marigold cultivars are moderately sensitive to salt. ‘Discovery Orange’, ‘Taishan Yellow’, ‘Discovery Yellow’, and ‘Taishan Gold’ were more tolerant than ‘Hot Pak Gold’, ‘Hot Pak Orange’, ‘Hot Pak Yellow’, and ‘Taishan Orange’.

Full access

Yuxiang Wang, Youping Sun, Genhua Niu, Chaoyi Deng, Yi Wang, and Jorge Gardea-Torresdey

Ornamental grasses are commonly used in urban landscapes in Utah and the Intermountain West of the United States. The relative salt tolerance of Eragrostis spectabilis (Pursh) Steud. (purple love grass), Miscanthus sinensis Andersson ‘Gracillimus’ (maiden grass), Panicum virgatum L. ‘Northwind’ (switchgrass), and Schizachyrium scoparium (Michx.) Nash (little bluestem) were evaluated in a greenhouse. Plants were irrigated with a nutrient solution at an electrical conductivity (EC) of 1.2 dS·m–1 (control), or saline solution at an EC of 5.0 or 10.0 dS·m–1. At harvest (65 days after the initiation of treatment), P. virgatum and S. scoparium exhibited no foliar salt damage, and E. spectabilis and M. sinensis had minimal foliar salt damage when irrigated with saline solution at an EC of 5.0 dS·m–1. At an EC of 10.0 dS·m–1, P. virgatum and S. scoparium still had no foliar salt damage, but E. spectabilis and M. sinensis displayed slight foliar salt damage, with visual scores greater than 3 (0 = dead; 5 = excellent). Compared with the control, saline solution at an EC of 5.0 and 10.0 dS·m–1 reduced the shoot dry weight of all ornamental grasses by 25% and 46%, respectively. The leaf sodium (Na+) concentration of E. spectabilis, M. sinensis, P. virgatum, and S. scoparium irrigated with saline solution at an EC of 10.0 dS·m–1 increased 14.3, 52.6, 5.3, and 1.7 times, respectively, and the chloride (Cl) concentration increased by 9.4, 11.1, 2.8, and 2.7 times, respectively. As a result of the salt-induced water deficit, plant height, leaf area, number of inflorescences and tillers, net photosynthesis rate (Pn), stomatal conductance (g S), and transpiration rate of four tested ornamental grasses decreased to some extent. Although high Na+ and Cl accumulated in the leaf tissue, all ornamental grass species still had a good visual quality, with average visual scores greater than 3. In conclusion, all ornamental grasses showed a very strong tolerance to the salinity levels used in this research.

Open access

Yuxiang Wang, Liqin Li, Youping Sun, and Xin Dai

Spirea (Spiraea sp.) plants are commonly used in landscapes in Utah and the intermountain western United States. The relative salt tolerance of seven japanese spirea (Spiraea japonica) cultivars (Galen, Minspi, NCSX1, NCSX2, SMNSJMFP, Tracy, and Yan) were evaluated in a greenhouse. Plants were irrigated with a nutrient solution with an electrical conductivity (EC) of 1.2 dS·m−1 (control) or saline solutions with an EC of 3.0 or 6.0 dS·m−1 once per week for 8 weeks. At 8 weeks after the initiation of treatment, all japanese spirea cultivars irrigated with saline solution with an EC of 3.0 dS·m−1 still exhibited good or excellent visual quality, with all plants having visual scores of 4 or 5 (0 = dead, 1 = severe foliar salt damage, 2 = moderate foliar salt damage, 3 = slight foliar salt damage, 4 = minimal foliar salt damage, 5 = excellent), except for Tracy and Yan, with only 29% and 64%, respectively, of plants with visual scores less than 3. When irrigated with saline solution with an EC of 6.0 dS·m−1, both ‘Tracy’ and ‘Yan’ plants died, and 75% of ‘NCSX2’ plants died. ‘Minspi’ showed severe foliar salt damage, with 32% of plants having a visual score of 1; 25% of plants died. ‘Galen’ and ‘NCSX1’ had slight-to-moderate foliar salt damage, with 25% and 21%, respectively, of plants with visual scores of 2 or less. However, 64% of ‘SMNSJMFP’ plants had good or excellent visual quality, with visual scores more than 4. Saline irrigation water with an EC of 3.0 dS·m−1 decreased the shoot dry weight of ‘Galen’, ‘Minspi’, ‘SMNSJMFP’, and ‘Yan’ by 27%, 22%, 28%, and 35%, respectively, compared with that of the control. All japanese spirea cultivars had 35% to 56% lower shoot dry weight than the control when they were irrigated with saline irrigation water with an EC of 6.0 dS·m−1. The japanese spirea were moderately sensitive to the salinity levels in this experiment. ‘Galen’ and ‘SMNSJMFP’ japanese spirea exhibited less foliar salt damage and reductions in shoot dry weight and were relatively more tolerant to the increased salinity levels tested in this study than the remaining five cultivars (Minspi, NCSX1, NCSX2, Tracy, and Yan).

Open access

Ji Jhong Chen, Yuxiang Wang, Asmita Paudel, and Youping Sun

Screening salinity-tolerant plants is usually time intensive and only applicable to a limited number of salinity levels. A near-continuous gradient dosing (NCGD) system allows researchers to evaluate a large number of plants for salinity tolerance with multiple treatments, more flexibility, and reduced efforts of irrigation. Rose of sharon (Hibiscus syriacus), ninebark (Physocarpus opulifolius), and japanese spirea (Spiraea japonica) were irrigated using an NCGD system with eight electrical conductivity (EC) levels ranging from 0.9 to 6.5 dS·m–1. At 11 weeks after irrigation was initiated, there were no significant differences among EC levels in terms of visual score, growth index [(Height + Width 1 + Width 2)/3], stem diameter, number of inflorescences, and shoot dry weight (DW) of rose of sharon. However, the root DW, relative chlorophyll content (SPAD), and net photosynthesis rate (Pn) of rose of sharon decreased linearly as EC levels increased. Ninebark and japanese spirea had increased foliar salt damage with increasing EC levels. The growth index, stem diameter, number of inflorescences, shoot and root DW, SPAD, and Pn of ninebark decreased linearly as EC levels increased. The growth index and SPAD of japanese spirea decreased quadratically with increasing EC levels, but its stem diameter, number of inflorescences, shoot and root DW, and Pn decreased linearly with increasing EC levels. The salinity threshold (50% loss of shoot DW) was 5.4 and 4.6 dS·m–1, respectively, for ninebark and japanese spirea. We were not able to define the salinity threshold for rose of sharon in this study. However, rose of sharon was the most salinity-tolerant species among the three landscape plants.