Search Results

You are looking at 21 - 30 of 83 items for

  • Author or Editor: William B. Miller x
  • Refine by Access: All x
Clear All Modify Search
Free access

Susan E. Trusty and William B. Miller

Exudation of phloem sap into EDTA (ethylenediaminetetraacetic acid) solutions has been found to be a successful technique for qualitatively determining translocated assimilates in many plants. Mature Chysanthemum leaves were excised under a solution of 10 mM EDTA (pH 7.0). The petioles of these leaves were placed in EDTA, and leaf exudate was collected at intervals for 24 h. Soluble carbohydrates were determined with HPLC. While numerous sugars were present in the leaf, sucrose was the only sugar found in the EDTA solutions. The greatest rate of sucrose exudation occurred in the first two h after excision. Diurnal fluctuations of soluble sugars in Chrysanthemum leaves were also monitored in greenhouse-grown plants (late winter in Arizona). Sucrose exhibited a clear diurnal fluctuation, and nearly doubled in concentration (to appx. 25 mg/g DWT) in the afternoon relative to the low in the morning. Other leaf carbohydrates, including glucose, starch, and fructans showed diurnal variations as well.

Free access

Joseph P. Albano and William B. Miller

Iron chelate photodegradation is a problem in tissue culture where limited soluble Fe in agar reduces callus tissue growth. Our objectives were to determine if Fe chelate photodegradation occurs in commercial fertilizers used in greenhouse plant production and, if so, the effects on plant Fe acquisition. Commercial 20N–10P–20K soluble fertilizers containing Fe-EDTA were prepared as 100x stocks based on a 100 mg N/liter (1x) concentration. A modified Hoagland's solution with Fe-DTPA was prepared as a 10x stock based on a 200 mg N/liter (1x) concentration. Samples then were kept in darkness or were irradiated with 500 μmol·m–2·s–1 from fluorescent and incandescent sources for ≤240 hours. Soluble Fe in the irradiated commercial fertilizer solutions decreased 85% in 240 h. Soluble Fe in the Hoagland's solution, prepared in the lab, decreased 97% in 72 h. There was no loss in soluble Fe in any dark-stored treatment; demonstrating photodegradation of Fe-chelates under commercial settings. Excised roots of marigold (Tagetes erecta L.), grown hydroponically in the irradiated solutions, had Fe(III)-DTPA reductase activity 2 to 6 times greater than roots of plants grown in solutions kept in darkness. Plants growing in irradiated solutions acidified the rhizosphere more than plants growing in solutions kept dark. The increase in Fe reductase activity and rhizosphere acidification are Fe-efficiency reactions of marigold responding to the photodegradation of Fe-chelates and subsequent decrease in soluble Fe in both commercial fertilizers and lab-prepared nutrient solution.

Free access

Susan S.C. Liou and William B. Miller

During transportation and storage of Dutch tulip bulbs, potential ethylene exposure could lead to flowering abnormalities, including accelerated flowering, shortened plant heights, and in the most extreme case, flower abortion. Sources of ethylene include Fusarium-infected bulbs, deteriorating tissues, and combustion engines. Treatment with 1-MCP (1-methylcyclopropene) may prevent ethylene action as 1-MCP occupies ethylene specific receptors on target tissue. Two aspects of this problem were quantified using four tulip cultivars: duration of ethylene exposure necessary to induce damage as well as the effective period of protection by 1-MCP against ethylene. Flower abortion appeared in susceptible cultivars after ≥9 days of ethylene exposure (10 ppm) and was only found in mature bulbs (late November). The effective protection period of 1-MCP against ethylene (2-week exposure of 10 ppm) was determined, using flowering percentages, to be as long as 4–7 days in young bulbs and 28 days for older bulbs. Effects of ethylene on other flower attributes and implications of these findings in industry practices will be discussed.

Free access

Anil P. Ranwala and William B. Miller

The effects of Promalin® [PROM; 100 mg·L–1 each of GA4+7 and benzyladenine (BA)] sprays on leaf chlorosis and plant height during greenhouse production of ancymidol-treated (two 0.5-mg drenches per plant) Easter lilies (Lilium longiflorum Thunb. `Nellie White') were investigated. Spraying with PROM at early stages of growth [36 or 55 days after planting (DAP)] completely prevented leaf chlorosis until the puffy bud stage, and plants developed less severe postharvest leaf chlorosis after cold storage at 4 °C for 2 weeks. When PROM was sprayed on plants in which leaf chlorosis had already begun (80 DAP), further leaf chlorosis was prevented during the remaining greenhouse phase and during the postharvest phase. PROM caused significant stem elongation (23% to 52% taller than controls) when applied 36 or 55 DAP, but not when applied at 80 DAP or later. The development of flower buds was not affected by PROM treatments. Although PROM sprays applied at 55 DAP or later increased postharvest flower longevity, earlier applications did not. Chemical names used: N-(phenylmethyl)-1H-purine 6-amine (benzyladenine, BA); α-cyclopropyl-α-(p-methoxyphenyl)-5-pyrimidinemethanol (ancymidol).

Free access

Joseph P. Albano and William B. Miller

Marigold (Tagetes erecta L.) grown hydroponically in an irradiated nutrient solution containing FeDTPA had root ferric reductase activity 120% greater, foliar Fe level 33% less, and foliar Mn level 90% greater than did plants grown in an identical, nonirradiated solution, indicating that the plants growing in the irradiated solution were responding to Fe-deficiency stress with physiological reactions associated with Fe efficiency. The youngest leaves of plants grown in the irradiated solution had symptoms of Mn toxicity (interveinal chlorosis, shiny-bronze necrotic spots, and leaf deformation). Plants grown in irradiated solution in which the precipitated Fe was replaced with fresh Fechelate were, in general, no different from those grown in the nonirradiated solution. Chemical name used: ferric diethylenetriaminepentaacetic acid (FeDTPA).

Free access

Joseph P. Albano and William B. Miller

Our objective was to assess the susceptibility of seven marigold varieties to Fe toxicity. Marigold varieties included were one hedge type, `Orange Jubilee'; five semi-dwarf types, `First Lady', `Gold Lady', `Orange Lady', `Marvel Gold', and `Yellow Galore'; and one dwarf type, `Discovery Orange'. Plants were grown in a greenhouse in a soilless medium and treatments consisted of 0.018 mm (low) and 0.36 mm (high) Fe-DTPA incorporated into a nutrient solution. Plant height was not affected by Fe treatment and ranged from 32 cm in `Orange Jubilee', 13 to 14 cm in the semi-dwarf varieties, and 7.0 cm in `Discovery Orange'. Leaf dry weight per plant was not affected by Fe treatment and ranged from 1.15 g in `Orange Jubilee', 0.68 to 0.95 g in the semi-dwarf varieties, and 0.56 g in `Discovery Orange'. Symptoms of Fe toxicity only developed in the high Fe treatment, and the percent leaf dry weight separated at harvest as symptomatic ranged from 97% in `Orange Jubilee', 55% to 85% in the semidwarf varieties, and 15% in `Discovery Orange'. The Fe concentration in leaves in the high Fe treatment was 5.7-times greater in `Orange Jubilee', 2 to 3-times greater in the semi-dwarf varieties, and 1.6-times greater in `Discovery Orange' than in the low Fe treatment. Based on these findings, `Orange Jubilee' and `Discovery Orange' were the most and least susceptible varieties, respectively, to Fe toxicity of the seven marigold varieties evaluated in this study.

Free access

Anil P. Ranwala and William B. Miller

Easter lily flower buds at five stages of development (stage 1, 3–4 cm in length; stage 2, 6–7 cm; stage 3, 9–10 cm; stage 4, unopened buds, 13–14 cm; and stage 5, open flower one day after anthesis) were harvested, and flower organs were dissected for carbohydrate analysis. Extracting soluble sugars in distilled water at 70°C gave the optimum yield of soluble sugars among the several extraction methods tested including 80% ethanol, and distilled water at various temperatures. Separation of the extracted soluble sugars by alkaline high performance anion exchange chromatography revealed the presence of glucose, fructose, sucrose, and two other sugars of unknown identity. Glucose and fructose concentrations increased remarkably during the flower development in sepal (about 15-fold), style (about 10-fold), and filament (about 5-fold), while sucrose levels remained constant at low concentrations. In stigma, sucrose levels increased parallel to the increase of hexose sugars during development. Ovary had high sucrose levels relative to hexoses that remained constant while hexoses increased gradually. In anther, hexose concentrations increased at the stage 2 and then dropped at stage 3 and 4. Sucrose levels were higher than hexoses in anther, and it increased from stage 1 to stage 2, then dropped at stage 3, and increased thereafter. In addition to these sugars, anthers at stages 2 and 3 had a series of late eluting oligosaccharides. These oligosaccharides could be hydrolyzed to glucose with hot 1 m H2SO4 or with amyloglucosidase.

Free access

Anil P. Ranwala and William B. Miller

Easter lily flower buds at five stages of development (stage 1, 3–4 cm in length; stage 2, 6–7 cm; stage 3, 9–10 cm; stage 4, unopened buds, 13–14 cm; and stage 5, open flower 1 day after anthesis) were harvested, and flower organs were dissected for invertase assay. On a fresh weight (FW) basis, anthers had the highest soluble invertase activity (about 10-fold greater) than all other organs reaching to 15 units/g FW by the stage 2. The activity dropped to about 3 units/g FW at stage 3 and 4, and then increased up to 10 units/g FW in open flowers. Specific activity (units per mg of protein) also showed the same trend. On a specific activity basis, sepal invertase activity steadily increased during bud development, but was relatively constant on a fresh weight basis. stigma, style, and ovary, soluble invertase activity expressed on a FW and specific activity basis steadily increased as bud development. Filament soluble invertase activity on FW basis dropped at the stage 2 and 3, while specific activity steadily increased during bud development. Cell wall-bound invertase activity (released with 1 m NaCl) was present in all flower organs. However, soluble activity accounted for the most of total activity in sepal, ovary and filament (about 90%). About 75% of total activity was soluble in anther and style, whereas nearly equal amounts of soluble and cell wall activities were present in the stigma. The cell wall bound invertase activity increased throughout the bud development in sepal, stigma, style, and ovary parallel to soluble activity. Anther cell wall-bound activity fluctuated in a similar pattern as the soluble activity.

Free access

Anil P. Ranwala and William B. Miller

Experiments were conducted to evaluate storage temperature, storage irradiance and prestorage foliar sprays of gibberellin, cytokinin or both on postharvest quality of Oriental hybrid lilies (Lilium sp. `Stargazer'). Cold storage of puffy bud stage plants at 4, 7, or 10 °C in dark for 2 weeks induced leaf chlorosis within 4 days in a simulated consumer environment, and resulted in 60% leaf chlorosis and 40% leaf abscission by 20 days. Cold storage also reduced the duration to flower bud opening (days from the end of cold storage till the last flower bud opened), inflorescence and flower longevity, and increased flower bud abortion. Storage at 1 °C resulted in severe leaf injury and 100% bud abortion. Providing light up to 40 μmol·m-2·s-1 during cold storage at 4 °C significantly delayed leaf chlorosis and abscission and increased the duration of flower bud opening, inflorescence and flower longevity, and reduced bud abortion. Application of hormone sprays before cold storage affected leaf and flower quality. ProVide (100 mg·L-1 GA4+7) and Promalin (100 mg·L-1 each GA4+7 and benzyladenine (BA)) effectively prevented leaf chlorosis and abscission at 4 °C while ProGibb (100 mg·L-1 GA3) and ABG-3062 (100 mg·L-1 BA) did not. Accel (10 mg·L-1 GA4+7 and 100 mg·L-1 BA) showed intermediate effects on leaf chlorosis. Flower longevity was increased and bud abortion was prevented by all hormone formulations except ProGibb. The combination of light (40 μmol·m-2·s-1) and Promalin (100 mg·L-1 each GA4+7 and BA) completely prevented cold storage induced leaf chlorosis and abscission.

Free access

Susan E. Trusty and William B. Miller

Postproduction changes in carbohydrate types and quantities in the leaves, stems, and inflorescences of pot chyrsanthemums [Dendranthema × gramfiflorum (Ramat.) Kitamura `Favor'] placed in interior conditions were investigated. Fructans, sucrose, glucose, and fructose were present in all plant parts. In inflorescences and leaves, an additional unidentified substance was present. All plant parts decreased in dry weight during the postproduction evaluation. This decrease was accompanied by overall reductions in total soluble carbohydrates (TSC) and starch. The appearance of leaves and stems was acceptable throughout the experiment. Leaves lost significant amounts of TSC during the first 4 days postproduction (DPP), due primarily to a 76% decrease in sucrose concentration. After 4 DPP, leaf and stem TSC remained relatively unchanged. In inflorescences, petal expansion continued through 12 DPP. Visible signs of senescence, including loss of turgor, color changes, and inrolling of petal edges were observed at 20 DPP, and by 28 DPP, the plants were determined unacceptable for consumer use. Inflorescences increased in fresh weight, but not dry weight, during petal expansion, then each decreased. Inflorescence TSC fell from 146 mg.g-1 dry weight at O DPP to 11 mg.g-1 at 28 DPP. Reducing sugars accounted for 84% of the inflorescence TSC at 4 DPP, dropping to 48% at 28 DPP. Fructan concentration decreased through 16 DPP and then remained unchanged, while starch levels rose from 25 to 34 mg·g -1 dry weight through 12 DPP, then decreased. Fractans decreased in polymerization during petal expansion. This result suggests an alternate use of fructans and starch as pools of available reserve carbohydrate during petal expansion in chrysanthemum.