Search Results

You are looking at 21 - 30 of 59 items for

  • Author or Editor: T.K. Hartz x
  • Refine by Access: All x
Clear All Modify Search
Free access

S.J. Breschini and T.K. Hartz

Trials were conducted in 15 commercial fields in the central coast region of California in 1999 and 2000 to evaluate the use of presidedress soil nitrate testing (PSNT) to determine sidedress N requirements for production of iceberg and romaine lettuce (Lactuca sativa L.). In each field a large plot (0.2-1.2 ha) was established in which sidedress N application was based on presidedress soil NO3-N concentration. Prior to each sidedress N application scheduled by the cooperating growers, a composite soil sample (top 30 cm) was collected and analyzed for NO3-N. No fertilizer was applied in the PSNT plot at that sidedressing if NO3-N was >20 mg·kg-1; if NO3-N was lower than that threshold, only enough N was applied to increase soil available N to ≈20 mg·kg-1. The productivity and N status of PSNT plots were compared to adjacent plots receiving the growers' standard N fertilization. Cooperating growers applied a seasonal average of 257 kg·ha-1 N, including one to three sidedressings containing 194 kg·ha-1 N. Sidedressing based on PSNT decreased total seasonal and sidedress N application by an average of 43% and 57%, respectively. The majority of the N savings achieved with PSNT occurred at the first sidedressing. There was no significant difference between PSNT and grower N management across fields in lettuce yield or postharvest quality, and only small differences in crop N uptake. At harvest, PSNT plots had on average 8 mg·kg-1 lower residual NO3-N in the top 90 cm of soil than the grower fertilization rate plots, indicating a substantial reduction in subsequent NO3-N leaching hazard. We conclude that PSNT is a reliable management tool that can substantially reduce unnecessary N fertilization in lettuce production.

Full access

T.K. Hartz and P.R. Johnstone

Limited soil nitrogen (N) availability is a common problem in organic vegetable production that often necessitates in-season fertilization. The rate of net nitrogen mineralization (Nmin) from four organic fertilizers (seabird guano, hydrolyzed fish powder, feather meal, and blood meal) containing between 11.7% and 15.8% N was compared in a laboratory incubation. The fertilizers were mixed with soil from a field under organic management and incubated aerobically at constant moisture at 10, 15, 20, and 25 °C. Nmin was determined on samples extracted after 1, 2, 4, and 8 weeks. Rapid Nmin was observed from all fertilizers at all temperatures; within 2 weeks between 47% and 60% of organic N had been mineralized. Temperature had only modest effects, with 8-week Nmin averaging 56% and 66% across fertilizers at 10 and 25 °C, respectively. Across temperatures, 8-week Nmin averaged 60%, 61%, 62%, and 66% for feather meal, seabird guano, fish powder, and blood meal, respectively. Cost per unit of available N (mineralized N + initial inorganic N) varied widely among fertilizers, with feather meal the least and fish powder the most expensive.

Free access

T.K. Hartz and J.P. Mitchell

The rate of N mineralization from 35 samples of manure or compost was estimated by both aerobic laboratory incubation and lath house pot studies at Davis, Calif., in 1996–97. Each manure and compost sample was mixed at 2% by dry weight with a 1 loam soil: 1 coarse sand blend. The amended soil blends were moisture equilibrated under 0.025-MPa pressure then incubated aerobically at constant moisture at 25 °C for 3 (1996) or 6 months (1997); subsamples were collected monthly (1996) or bimonthly (1997) for mineral N determination. Four-liter pots were also filled with the amended soil blends and seeded with fescue (Festuca arundinacea). The pots were watered but not fertilized for 16 (1996) or 18 (1997) weeks in a lath house at ambient summer conditions. N mineralization from the pot study was calculated from total fescue biomass N plus mineral N from pot leachate, minus those quantities in pots of the unamended soil blend. N mineralization rate estimates from the two techniques were highly correlated (r 2 = 0.79). Green waste composts typically mineralized <5% of total N, manure composts 5% to10%, and manures (poultry, dairy, and feedlot) 7% to 20%. After 4 months of incubation, N mineralization rate (expressed as percent of total N per month) from the composts and manures was similar to that of the unamended soil blend.

Free access

S. Castro Bustamante and T.K. Hartz

Organic processing tomato (Solanum lycopersicum L.) production is a significant industry in California, yet little nitrogen (N) fertility research is available to guide N management. A total of 37 certified organic processing tomato fields in the Sacramento Valley of California were monitored during the 2012 and 2013 production seasons, with two objectives: 1) to document current N management practices and 2) to investigate the utility of early-season soil and plant N monitoring techniques in predicting seasonal crop N sufficiency. Between ≈3 and 11 weeks after transplanting (WAT) soil mineral N (SMN), leaf N and petiole NO3-N were determined every other week. In 22 fields, whole plant N concentration at ≈11 WAT was determined as a measure of crop N sufficiency. Growers were surveyed regarding N management practices used and fruit yields achieved. Net N mineralization (Nmin) was measured for 20 fields soils by aerobic laboratory incubation. Carbon mineralization (Cmin) in 24 hours following rewetting of air-dried soil and water extractable organic nitrogen (WEON) and carbon (WEOC) were also determined and evaluated as predictors of Nmin. Nitrogen management was primarily based on the application of manure or manure compost in the fall. Organic fertilizers were applied mainly in spring (pre- and post-transplanting). SMN in the top 60 cm at 3 WAT ranged from 6 to 32 mg·kg−1. About 30% of fields were N deficient by 11 WAT. Sensitivity analysis showed that SMN (whether measured from 0 to 30 or 0 to 60 cm) and leaf N at 5 WAT correctly predicted late-season plant N status in >60% of the fields. Nmin in 28 days ranged from 8 to 31 mg·kg−1, representing an average of 2% of total soil N. Correlation between Nmin and Cmin was weak (r = 0.44, P = 0.051) while stronger correlations were observed between Nmin and WEOC, WEON and total soil N (r = 0.63, 0.61 and 0.51, respectively, all P < 0.03). A multiple linear regression model that used 3 WAT SMN (0–30 cm) and WEON as independent variables improved Nmin prediction (adj. R 2 = 0.67). Significant fruit yield increase with sidedress N application of feather meal at 5–6 WAT was observed in 2 of 4 field trials, demonstrating the ability to remedy a soil N limitation identified by early-season N monitoring.

Free access

T.K. Hartz and F.J. Costa

The production of cool-season vegetable crops in California's coastal valleys is characterized by high N input (typically 200–300 kg·ha–1 per crop), with two crops per year the norm. N. removal in harvested biomass seldom exceeds 100 kg·ha–1, suggesting a high degree of inefficiency in N management. A project was conducted on a commercial farm in Santa Maria to document the utility of intensive monitoring of soil and plant N status on improving N management. Eight fields were monitored through successive cropping cycles. Slow-release N fertilizer was applied preplant at 110–250 kg·ha–1 in subplots in each field to provide a reference of known N sufficiency against which to compare field productivity; these reference plots also received the same in-season fertilizer N applied in the balance of the field. N monitoring techniques included: in situ and controlled-environment soil incubation to estimate net N mineralization, soil NO3-N analysis by a “quick test” technique using colormetric test strips, and petiole sap analysis by NO3-N selective electrode. It was consistently demonstrated that, for lettuce, cauliflower, and broccoli, maximum crop productivity was obtained with seasonal N applications 50–100 kg N/ha less than the industry norm and that fertilizer cost savings more than offset the cost of crop and soil monitoring.

Full access

T.K. Hartz, R. Smith, and M. Gaskell

Limited soil nitrogen (N) availability is a common problem in organic vegetable production that often necessitates additional N fertilization. The increasing use of drip irrigation has created a demand for liquid organic fertilizers that can be applied with irrigation. The N availability of three liquid organic fertilizers was evaluated in an incubation study and a greenhouse bioassay. Phytamin 801 contained fishery wastes and seabird guano, while Phytamin 421 and Biolyzer were formulated from plant materials. The fertilizers ranged from 26 to 60 g·kg−1 N, 8% to 21% of which was associated with particulate matter large enough to potentially be removed by drip irrigation system filtration. The fertilizers were incubated aerobically in two organically managed soils at constant moisture at 15 and 25 °C, and sampled for mineral N concentration after 1, 2, and 4 weeks. In the greenhouse study, these fertilizers and an inorganic fertilizer (ammonium sulfate) were applied to pots of the two organically managed soils with established fescue (Festuca arundinacea) turf; the N content of clippings was compared with that from unfertilized pots after 2 and 4 weeks of growth. Across soils and incubation temperatures, the N availability from Phytamin 801 ranged from 79% to 93% of the initial N content after 1 week, and 83% to 99% after 4 weeks. The plant-based fertilizers had significantly lower N availability, but after 4 weeks, had 48% to 92% of initial N in mineral form. Soil and incubation temperature had modest but significant effects on fertilizer N availability. Nitrification was rapid, with >90% of mineral N in nitrate form after 1 week of incubation at 25 °C, or 2 weeks at 15 °C. N recovery in fescue clippings 4 weeks after application averaged 60%, 38%, and 36% of initial N content for Phytamin 801, Phytamin 421, and Biolyzer, respectively, equivalent to or better than the N recovery from ammonium sulfate.

Free access

K.S. Mayberry, T.K. Hartz, and M. Cantwell

Trials were conducted in California to evaluate techniques to extend post-harvest life of Western shipper-type muskmelon cultivars (Cusumis melo L.). The use of .025 mm polyethylene bags, either as individual melon wraps or as liners for 18 kg commercial cartons, minimized water loss and associated softening of the fruit. A three minute dip in 58-60°C water effectively checked surface mold and decay. The combination of hot water dip and polyethylene carton liner maintained high quality marketable fruit for at least 30 days of cold storage at 2-4°C. This technique would require only modest changes in commercial handling practices, with minimal additional per carton cost. Commercial utilization of this technique could stimulate the export of California muskmelons to Pacific Rim countries.

Free access

T.K. Hartz, M. LeStrange, and D.M. May

The response of bell pepper (Capsicum annuum L.) to five rates of N fertigation between 0 and 336 kg N/ha was studied at two drip-irrigated sites [Univ. of California, Davis (UCD) and West Side Field Station, Five Points (WSFS)] in California in 1992. Nitrogen application, in the form of a urea: ammonium nitrate mixture (UN-32), was applied in eight (WSFS) or 10 (UCD) equal weekly increments, beginning after transplant establishment. At both sites, fruit yield and mean fruit size peaked at 252 kg N/ha, with additional N retarding crop productivity. Maximum fruit yield was obtained by fertility treatments that maintained petiole NO3-N concentration >5000 μg·g-1 through the early fruit bulking period. Two techniques for monitoring crop N status, designed for field use, were evaluated. There was a close relationship between the NO3-N concentration of fresh petiole extracts, as measured by a portable, battery-operated nitrate selective electrode, and dry tissue analyzed by conventional laboratory technique (r2 = 0.89). Relative chlorophyll concentration, measured nondestructively by a dual-wavelength leaf absorbance meter, was poorly correlated with whole-leaf N concentration (r2 = 0.55). However, the ratio of such chlorophyll readings for a treatment compared to an in-field reference of known N sufficiency (252 kg·ha-1 treatment) showed promise as a technique for identifying N deficiency.

Free access

T.K. Hartz, A. Baameur, and D.B. Holt

A study was conducted to determine the feasibility of fieldscale CO2 enrichment of vegetable crops grown under tunnel culture. Cucumber, squash and tomato were grown under polyethylene tunnels in a manner similar to commercial practices in southern California. The buried drip irrigation system was used to uniformly deliver an enriched CO2 air stream independent of irrigation. CO2 concentration in the tunnel atmosphere was maintained between 700-1000 ppm during daylight hours. Enrichment began two weeks after planting and continued for four weeks. At the end of the treatment phase, enrichment had significantly increased plant dry weights. This growth advantage continued through harvest, with enriched plots yielding 20%, 30% and 32% more fruit of squash, cucumber and tomato, respectively. As performed in this study, the expense of CO2 enrichment represented less than a 10% increase in total pre-harvest costs. Industrial bottled CO2 was used in this study; since bottled CO2 is captured as a byproduct of industrial processes, this usage represents a recycling of CO2 that would otherwise be vented directly to the atmosphere.