Search Results

You are looking at 21 - 29 of 29 items for

  • Author or Editor: Richard Smith x
  • Refine by Access: All x
Clear All Modify Search
Free access

Timothy K. Hartz, Paul R. Johnstone, Richard F. Smith, and Michael D. Cahn

Application of calcium (Ca) fertilizers is a common practice of California lettuce growers to minimize the occurrence and severity of tipburn, particularly in romaine lettuce (Lactuca sativa L. var. longifolia Lam.). An evaluation of the effect of soil Ca availability on the severity of tipburn in romaine lettuce was conducted in the Salinas Valley of central California in 2005 to 2006. Twenty representative soils from this region were evaluated for Ca availability by ammonium acetate extraction, saturated paste extraction, and extraction of soil solution through centrifugation of soil at field-capacity moisture content. Soil solution Ca in these soils was generally high, ranging from 5 to 80 mmolc·L−1, representing 44% to 71% of cations on a charge basis. Soil solution Ca was highly correlated with saturated paste Ca (r 2 = 0.70) but not with exchangeable Ca (r 2 = 0.01). However, saturated paste extraction significantly underestimated soil solution Ca concentration (regression slope = 0.19). A survey of 15 commercial romaine lettuce fields showed tipburn severity to be unrelated to either leaf Ca concentration or soil Ca availability. The most severe tipburn was observed in fields in which transpiration was reduced by foggy weather during the final 2 weeks of growth. Ca fertilizers (calcium nitrate, calcium thiosulfate, and calcium chloride) applied through drip irrigation during the final weeks of lettuce growth were ineffective in increasing romaine leaf Ca concentration in three field trials; tipburn was present in only one trial, and Ca fertigation had no effect on tipburn severity. We conclude that under typical field conditions in this region, tipburn severity is primarily a function of environmental conditions. Soil Ca availability plays no substantive role in tipburn severity, and Ca fertigation does not improve lettuce Ca uptake or reduce tipburn.

Full access

Mark Gaskell, Benny Fouche, Steve Koike, Tom Lanini, Jeff Mitchell, and Richard Smith

This article summarizes the current status of organic vegetable production practices in California. The production of vegetables organically is growing rapidly in California, led in large part by growth in the market demand for organically grown produce. Key aspects of organic vegetable production operations such as certification and farm production planning, soil management, weed management, insect management, and plant disease management involve special practices. Many practices have not been thoroughly researched and the scientific base for some practices is still being developed.

Free access

Howard F. Harrison, Judy A. Thies, Richard L. Fery, and J. Powell Smith

A preliminary screening experiment was conducted to evaluate 47 cowpea [Vigna unguiculata (L.) Walp.] genotypes for use as a weed-suppressing cover crop. Of these, 11 were selected for further testing on the basis of vigorous growth and weed-suppressing ability. In a field experiment repeated over 4 years, the selected genotypes were not different from the leading cover crop cultivar `Iron Clay' in biomass production. Vigor ratings, vine growth ratings, and canopy widths of some genotypes exceeded those of `Iron Clay' Vigor ratings and canopy measurements were efficient selection criteria that could be useful for breeding cover crop cowpea cultivars. All except one selection were highly resistant to southern root knot nematode [Meloidogyne incognita (Kofoid and White) Chitwood], and the selections varied in seed size, photoperiod, and response to foliar diseases.

Free access

Malcolm W. Smith, Jeremy D. Bright, Mark D. Hoult, Richard A. Renfree, Tony Maddern, and Neil Coombes

Despite an abundance of polyembryonic genotypes and the need for rootstocks that improve scion yield and productivity, simultaneous field testing of a wide range of mango (Mangifera indica L.) genotypes as rootstocks has not previously been reported. In this experiment, we examined the growth and yield of ‘Kensington Pride’ on 64 mango genotypes of diverse origin during the first four seasons of fruit production to identify those worth longer-term assessment. We also recorded morphological characteristics of seedlings of 46 of these genotypes in an attempt to relate these measures to subsequent field performance. Tree canopy development on the most vigorous rootstocks was almost double that on the least vigorous. Growth rates differed by more than 160%. Cumulative marketable yield ranged from 36 kg/tree for the lowest yielding rootstock to 181 kg/tree for the most productive. Yield efficiency also differed markedly among the 64 rootstocks with the best treatment being 3.5 times more efficient than the poorest treatment. No relationship was found between yield efficiency and tree size, suggesting it is possible to select highly efficient rootstocks of differing vigor. Two genotypes (‘Brodie’ and ‘MYP’) stood out as providing high yield efficiency with small tree size. A further two genotypes (‘B’ and ‘Watertank’) were identified as offering high yield efficiency and large tree size and should provide high early yields at traditional tree spacing. Efforts to relate the morphology of different genotype seedlings to subsequent performance as a rootstock showed that nursery performance of mango seedlings is no indication of their likely behavior as a rootstock. The economic cost of poor yields and low yield efficiencies during the early years of commercial orchard production provide a rationale for culling many of the rootstock treatments in this experiment and concentrating future assessment on the top ≈20% of the 64 treatments. Of these, ‘MYP’, ‘B’, ‘Watertank’, ‘Manzano’, and ‘Pancho’ currently show the most promise.

Free access

M. Murshidul Hoque, Husein Ajwa, Mona Othman, Richard Smith, and Michael Cahn

Commercial lettuce production requires adequate levels of nitrogen (N), phosphorus (P), and potassium (K) to provide high-quality postharvest attributes needed for longer shelf life. Factorial experiments were conducted in Salinas, CA, to evaluate yield and postharvest quality of both romaine and iceberg lettuce using fertilizers containing various levels of N, P, and K. Lettuce was evaluated for yield and postharvest quality parameters, including color, wilt, turgidity, glossiness, decay, brittleness, fringe burn, and salt burn. Uptake of N, P, K, calcium, and silicon by plants was also determined. Regardless of fertilizer treatment, shelf life and visual quality were better in the iceberg lettuce than romaine lettuce when cold-stored at 1 °C for 14 d. Yield increased with increased N application rate, but post-harvest quality fell at high levels of N (337 kg·ha−1) and P (225 kg·ha−1). The most economical treatment providing the highest yield and best post-harvest quality was the combination of 225 kg·ha−1 N and 112 kg·ha−1 P.

Full access

Qingquan Chu, Jiangang Liu, Khaled Bali, Kelly R. Thorp, Richard Smith, and Guangyao (Sam) Wang

The low availability and high cost of farm hand labor make automated thinners a faster and cheaper alternative to hand thinning in lettuce (Lactuca sativa). However, the effects of this new technology on the uniformity of plant spacing and size as well as crop yield are not proven. Three experiments were conducted in commercial romaine heart lettuce fields in 2013 and 2014 in Imperial Valley, CA, to compare the effects of automated thinning and hand thinning on uniformity of in-row spacing, plant size, and crop yield. Overhead images taken at 1 week after hand thinning indicate that thinning 8 to 11 days earlier by automated thinners did not affect plant size compared with the hand thinning treatment. However, lettuce plants in the automated thinning treatment were larger than plants in the hand thinning treatment 2 to 3 weeks after hand thinning. Automated thinners increased the uniformity of in-row spacing, increased the percentage of plants with the desired in-row spacing of 24 to 32 cm, and almost completely removed plants with an undesirable in-row spacing of 4 to 20 cm. As a result, individual lettuce plant weight and heart weight from the automated thinning plots was significantly greater and plants were more uniform compared with the hand thinned plants. Despite increases in lettuce plant size and uniformity in all three experiments, yield benefits of automated thinning were only significant in one of the three experiments due to larger plant populations resulting from hand thinning. This study suggests that automated thinning increases lettuce plant size and uniformity and makes it possible for growers to increase plant population and crop yield by optimizing in-row spacing.

Free access

Thomas G. Bottoms, Richard F. Smith, Michael D. Cahn, and Timothy K. Hartz

As concern over NO3-N pollution of groundwater increases, California lettuce growers are under pressure to improve nitrogen (N) fertilizer efficiency. Crop growth, N uptake, and the value of soil and plant N diagnostic measures were evaluated in 24 iceberg and romaine lettuce (Lactuca sativa L. var. capitata L., and longifolia Lam., respectively) field trials from 2007 to 2010. The reliability of presidedressing soil nitrate testing (PSNT) to identify fields in which N application could be reduced or eliminated was evaluated in 16 non-replicated strip trials and five replicated trials on commercial farms. All commercial field sites had greater than 20 mg·kg−1 residual soil NO3-N at the time of the first in-season N application. In the strip trials, plots in which the cooperating growers’ initial sidedress N application was eliminated or reduced were compared with the growers’ standard N fertilization program. In the replicated trials, the growers’ N regime was compared with treatments in which one or more N fertigation through drip irrigation was eliminated. Additionally, seasonal N rates from 11 to 336 kg·ha−1 were compared in three replicated drip-irrigated research farm trials. Seasonal N application in the strip trials was reduced by an average of 77 kg·ha−1 (73 kg·ha−1 vs. 150 kg·ha−1 for the grower N regime) with no reduction in fresh biomass produced and only a slight reduction in crop N uptake (151 kg·ha−1 vs. 156 kg·ha−1 for the grower N regime). Similarly, an average seasonal N rate reduction of 88 kg·ha−1 (96 kg·ha−1 vs. 184 kg·ha−1) was achieved in the replicated commercial trials with no biomass reduction. Seasonal N rates between 111 and 192 kg·ha−1 maximized fresh biomass in the research farm trials, which were conducted in fields with lower residual soil NO3-N than the commercial trials. Across fields, lettuce N uptake was slow in the first 4 weeks after planting, averaging less than 0.5 kg·ha−1·d−1. N uptake then increased linearly until harvest (≈9 weeks after planting), averaging ≈4 kg·ha−1·d−1 over that period. Whole plant critical N concentration (Nc, the minimum whole plant N concentration required to maximize growth) was estimated by the equation Nc (g·kg−1) = 42 − 2.8 dry mass (DM, Mg·ha−1); on that basis, critical N uptake (crop N uptake required to maintain whole plant N above Nc) in the commercial fields averaged 116 kg·ha−1 compared with the mean uptake of 145 kg·ha−1 with the grower N regime. Soil NO3-N greater than 20 mg·kg−1 was a reliable indicator that N application could be reduced or delayed. Neither leaf N nor midrib NO3-N was correlated with concurrently measured soil NO3-N and therefore of limited value in directing in-season N fertilization.

Open access

Cyrus A. Smith, James L. Walworth, Mary J. Comeau, Richard J. Heerema, Joshua D. Sherman, and Randall Norton

A field study was conducted to evaluate tolerance of pecan rootstocks to soil salinity and sodicity. Seven cultivars—Elliott, Giles, Ideal, Peruque, Riverside, ‘Shoshoni, and VC1-68—were selected from a range of geographic regions of origin. The soil of the experimental plot was a poorly drained, saline–sodic Pima silty clay variant. The irrigation water was a moderately saline mix of Gila River and local groundwater with an electrical conductivity of 2.8 dS⋅m–1, containing primarily ions of Na and Cl. Eighty seeds of each cultivar were planted in a greenhouse in late Feb. 2016; 48 seedlings of each cultivar were transplanted into field plots in Feb. 2017. Half the trees received a soil-based application of Zn–ethylenediaminetetraacetic acid (EDTA) at planting. The trees were observed and rated for both vigor and resistance to salt injury on seven separate occasions. Trunk diameter was measured each dormant season. Leaf samples were collected on 9 Oct. 2019 and 6 Oct. 2020, and were analyzed for nutrient content. Zn-EDTA was not found to have a significant effect on growth, vigor, or resistance to salt injury. ‘Elliott’ seedlings exhibited greater tolerance for the alkaline, saline–sodic soil conditions than other cultivars. ‘Giles’ and ‘Peruque’ were most severely affected. Resistance to salt injury (ranging from marginal leaf burn to necrosis of entire leaf), vigor, and growth correlated more strongly with foliar concentrations of Na than Cl or K during 2019. Vigor and growth were not significantly correlated with foliar Na, Cl, or K concentrations in 2020. The foliar K:Na ratio had a nearly equal correlation with resistance to salt injury and a greater correlation with growth than that of Na alone in 2019. However, although the correlation of the K:Na ratio with vigor was stronger than that of Cl or K, Na had the strongest correlation with vigor in 2019. In 2020, the only significant correlation of growth and vigor was with the K:Na ratio. The strongest correlation with resistance to salt injury in 2020 was with foliar Na concentration.

Free access

Joji Muramoto, Richard F. Smith, Carol Shennan, Karen M. Klonsky, James Leap, Miriam Silva Ruiz, and Stephen R. Gliessman

Legume/cereal mixed winter cover crops are commonly used by organic growers on the central coast of California, but they are unable to provide sufficient nitrogen (N) for a high N-demanding vegetable crop such as broccoli and supplemental fertilizer application may be necessary. The goals of this project were to evaluate the contribution of N from a mixed legume/cereal cover crop (CC) and feather meal and blood meal as organic fertilizers (OF) to an organic broccoli crop and to evaluate economic benefits of CC and OF to the subsequent organic broccoli crop. Trials were conducted at two sites (A and B) with different management histories. Cover crops were grown over the winter and incorporated into the soil in the spring and subsequently broccoli [Brassica oleracea L. (Italica group)] was grown in 2006 at both sites and in 2007 at B only. Cover crop and no CC treatments were grown with supplemental organic fertilizers at four fertility levels (0, 84, 168, and 252 kg N/ha of OF) with four replicates. Generally broccoli head yields at A (14.9 to 26.3 Mg·ha−1) were higher than at B (0.7 to 17.4 Mg·ha−1 in 2006 and 5.5 to 17.9 Mg·ha−1 in 2007). Yield and aboveground biomass N were significantly increased by OF at rates up to 168 kg N/ha at A and to 252 kg N/ha at B and by CC in 2006 at both sites but not in 2007 at B. Although N content of the CC was similarly low at A (2006) and at B (2007), immobilization of soil mineral N occurred only at B. This suggests that the addition of a low N content CC was offset by high N mineralization from the soil at A with a long organic management history (greater than 33 years). Supplemental fertilizer applications may be necessary to achieve optimal yields, but the amount needed can be reduced by cover cropping in fields with a long history of cover crop-based organic management (A) or when cover crop N content is sufficiently high to prevent immobilization (B, 2006). Soil NO3-N patterns suggest a pre-side dress nitrate test may also be useful for N management in organic broccoli. Use of cover crops increased net return above harvest and fertility costs when the yield reduction by N immobilization did not take place. However, the net return increase by the use of cover crops tended to diminish as the rate of OF application increased.