Search Results

You are looking at 21 - 30 of 40 items for

  • Author or Editor: Rebecca L. Darnell x
  • Refine by Access: All x
Clear All Modify Search
Free access

Gerardo H. Nunez, James W. Olmstead, and Rebecca L. Darnell

Vaccinium arboreum (VA) is a wild blueberry species that exhibits wider soil pH tolerance and greater ability for iron and nitrate uptake than cultivated Vaccinium species, including southern highbush blueberry (SHB, V. corymbosum interspecific hybrids). The ability of VA and SHB to respond to iron deficiency by rhizosphere acidification was investigated. Rooted cuttings of the VA genotype FL09-502 and SHB ‘Emerald’ were transplanted to a hydroponic system filled with complete nutrient solution. After 14 days of acclimation at 45 µm iron, plants were transferred to unbuffered nutrient solutions containing 90 or 10 µm iron. ‘Emerald’ and FL09-502 plants grown in 10 µm iron exhibited less iron uptake and lower chlorophyll, total iron, and active iron contents than plants grown in 90 µm iron. Generally, there were no species-level differences in iron or nitrate uptake. Neither FL09-502 nor ‘Emerald’ acidified the rhizosphere in either the nutrient solution or in a gel-based assay, regardless of external iron concentration. A screen of 18 additional genotypes of VA and SHB confirmed that this response is absent in these taxa. Thus, rhizosphere acidification is not part of the iron deficiency response of SHB and VA. In addition, the ability to acidify the soil is not likely to be responsible for the wider soil pH tolerance of VA.

Free access

Timothy M. Spann, Jeffrey G. Williamson, and Rebecca L. Darnell

Experiments were conducted with V. darrowi and two cultivars of southern highbush blueberry, `Sharpblue' and `Misty,' to test whether V. darrowi and cultivars derived from it are photoperiodic with respect to flower bud initiation. Plants of each cultivar were grown under three different photoperiod treatments [long days (LD) = 16-hour photoperiod; short days (SD) = 8-hour photoperiod; and short days + night interrupt (SD-NI) = 8-hour photoperiod with 1-hour night interrupt] at constant 21 °C for 8 weeks. Vegetative growth was greatest in the LD plants of both cultivars. Flower bud initiation occurred only in the SD treatments, and the lack of flower bud initiation in the SD-NI treatment indicates that flower bud initiation is a phytochrome mediated response in Vaccinium. Previously initiated flower buds on the V. darrowi plants developed and bloomed during the LD treatment, but bloom did not occur in the SD and SD-NI treatment plants until after those plants were moved to LD. These data indicate that flower bud initiation in both V. darrowi and southern highbush blueberry is photoperiodically sensitive, and is promoted by short days, while flower bud development is enhanced under long days.

Free access

Rebecca L. Darnell, Horacio E. Alvarado-Raya, and Jeffrey G. Williamson

Annual production systems for red raspberry (Rubus idaeus L.) have been proposed for off-season production or for increasing crop diversity in warm winter climates. However, yields in these annual systems are low compared with annual yields in perennial production systems. The yield reduction may be from the root pruning that occurs during removal and shipment of the canes from the nursery. This would result in significant root loss and may decrease the availability of root carbohydrates for reproductive development. To investigate this, ‘Cascade Delight’ red raspberry plants were root pruned during dormancy, and growth and fruiting of these plants were compared with non root-pruned controls the next season. Dry weights of all organs except floricane stems increased throughout the growing season; however, root pruning decreased root, floricane lateral, and total fruit dry weight compared with no root pruning. The yield decrease observed in root-pruned plants was because of a decrease in flower and fruit number per cane compared with the control. Total carbohydrate concentration in roots of root-pruned and non root-pruned plants decreased significantly between pruning and budbreak; however, root carbohydrate concentration and content were always lower in root-pruned compared with non root-pruned plants. The lower root carbohydrate availability in root-pruned compared with non root-pruned plants during budbreak apparently limited flower bud formation/differentiation, resulting in decreased yield. These results suggest that yields in annual red raspberry production systems are limited because of the loss of root carbohydrates during removal from the nursery. Management practices that increase yield per plant (e.g., by ameliorating root loss) or increase yields per hectare (e.g., by increasing planting density) are needed to render the annual production system economically viable.

Free access

Horacio E. Alvarado-Raya, Rebecca L. Darnell, and Jeffrey G. Williamson

Low yields have been observed in annual production systems in raspberry (Rubus idaeus L.) compared with annual yields in perennial systems. This yield reduction could be related to a depletion of root carbohydrates and its consequent detrimental effect on fruit number or size. Additionally, primocanes could play an important role in the carbohydrate dynamics in an annual system and may also affect yield. Two experiments were carried out in 2003 and 2004 to determine the importance of root carbohydrates and primocanes in fruiting and yield components of ‘Tulameen’ red raspberry in an annual production system. In the 2003 experiment, girdled floricanes were compared with nongirdled controls. Girdling before bloom decreased fruits per cane and consequently yield per cane compared with controls, whereas girdling at the end of bloom had no effect. Root dry weight accumulation at the end of the fruiting season was significantly less in both early and late girdled compared with nongirdled plants. In 2004, floricanes were completely girdled or nongirdled at midflowering. Additionally, three primocanes were permitted to grow in one-half of the nongirdled and girdled plants, whereas primocanes were completely removed from the other half. Girdling and removal of all primocanes resulted in 100% plant mortality. In the presence of primocanes, floricane girdling had no effect on yield compared with the nongirdled treatments. There was a reduction in root dry weight in the nongirdled + primocane removal treatment compared with the treatments in which three primocanes were present. In the presence of primocanes, however, root dry weights were similar in both girdled and nongirdled plants. These results suggest that root carbohydrates are important in determining fruit number and yield in the annual system, and reductions in root carbohydrate during early flowering results in decreased yield. However, roots appear to quickly convert from source to sink status, and as the season progresses, both floricanes and primocanes act as sources to replenish root carbohydrate reserves. Carbohydrate dynamics appear to be similar between the annual production system and the traditional perennial system; however, because the annual system begins with limited carbohydrate reserves resulting from root pruning that occurs during removal from the nursery, yields are lower than those seen in perennial systems.

Free access

Nicacio Cruz-Huerta, Jeffrey G. Williamson, and Rebecca L. Darnell

Cool night temperatures have been reported to induce ovary swelling and consequent fruit deformation in bell pepper (Capsicum annuum L.), resulting in unmarketable fruit. This response is a serious limitation to the success of winter production systems for bell pepper. Limited work has been done with other types of sweet pepper, so it is unknown how universal this response is. Furthermore, most prior work has examined effects on ovary diameter only, and there is limited characterization of other ovary traits in response to cool night temperature. The objectives of the present study were to determine the effects of low night temperature on ovary characteristics in different sweet pepper cultivars and to determine the parts of the ovary that are most affected by these factors. Three types of sweet pepper (bell, long-fruited, and cherry) were exposed to 22/20 or 22/12 °C day:night temperatures and flowers at anthesis were continuously harvested throughout the experiments. Ovary fresh weight (FW), diameter, and length across all types (and cultivars within type) were greater under 22/12 °C compared with 22/20 °C. The increase in ovary FW was the result of increases in both ovary wall and placenta FW. In general, all cultivars exhibited increases in ovary size under 12 °C compared with 20 °C night temperature. Differences in ovary FW resulting from night temperature became more pronounced with time. These results indicate that low night temperature effects on ovary swelling may be a universal response among sweet pepper types. Three to 4 weeks are required for maximum swelling response, suggesting that flower buds must be exposed to low night temperatures within the first week after flower bud initiation, because previous work found that flower bud initiation in bell pepper takes ≈4 weeks. However, the duration of low night temperatures necessary for this response remains unknown.

Full access

Rebecca L. Darnell, Bruno Casamali, and Jeffrey G. Williamson

Successful blueberry (Vaccinium sp.) cultivation typically requires soils with low pH, high organic matter, readily available iron, and nitrogen (N) in the ammonium form. Growth of blueberry on typical mineral soils (higher pH, low organic matter) is reduced. Although soil pH effects on nutrient availability and uptake are known, it is unclear if the requirement for low soil pH in blueberry production is due to effects on nutrient availability/uptake or is a more direct effect of rhizosphere pH on root function. In addition, it is unclear if the requirement for high organic matter (soil amendments) is related directly to nutrient availability/uptake. Several studies have examined the use of rootstocks to increase soil adaptation of blueberry and some of these rootstocks have been found to increase plant vigor and yield. In particular, we have investigated whether sparkleberry (Vaccinium arboreum)—a wild blueberry species that is adapted to high pH and low organic matter soils—could be used as a rootstock for commercial production of blueberry on mineral soils. Our work indicates that both nitrate (NO3 ) and iron (Fe) uptake and assimilation are greater in sparkleberry compared with southern highbush blueberry [SHB (Vaccinium corymbosum interspecific hybrid)]. This is correlated with increased activity of nitrate reductase (NR) and iron chelate reductase, the rate limiting enzymes for NO3 and Fe acquisition, respectively. Field studies comparing growth and yield of own-rooted vs. grafted ‘Meadowlark’ and ‘Farthing’ SHB in amended vs. nonamended soils are ongoing. In general, own-rooted plants on amended soils exhibit greater growth than own-rooted on nonamended soils, while grafted plants in either soil system exhibit intermediate growth. Yields generally followed this pattern. Our preliminary results suggest that tolerance of SHB to mineral soils is greater when plants are grafted onto sparkleberry than when grown on their own roots. However, growth and yield of grafted plants grown under mineral soil conditions may not equal or exceed that of own-rooted plants grown under optimum soil conditions, at least in the first years after field planting. Longer term studies are necessary to fully evaluate the potential of using sparkleberry and other blueberry species as rootstocks for SHB and northern highbush blueberry (V. corymbosum).

Free access

Timothy M. Spann, Jeffrey G. Williamson, and Rebecca L. Darnell

Experiments were conducted with `Misty' southern highbush blueberry (Vaccinium corymbosum L. interspecific hybrid) to test the effects of high temperature on flower bud initiation and carbohydrate accumulation and partitioning. Plants were grown under inductive short days (SDs = 8 hour photoperiod) or noninductive SDs with night interrupt (SD-NI = 8 hour photoperiod + 1 hour night interrupt), at either 21 or 28 °C for either 4 or 8 weeks. Flower bud initiation occurred only in the inductive SD treatments and was significantly reduced at 28 °C compared with 21 °C. The number of flower buds initiated was not significantly different between 4- and 8-week durations within the inductive SD, 21 °C treatment. However, floral differentiation appeared to be incomplete in the 4-week duration buds and bloom was delayed and reduced. Although plant carbohydrate status was not associated with differences in flower bud initiation between SD and SD-NI treatments, within SD plants, decreased flower bud initiation at high temperature was correlated with decreased whole-plant carbohydrate concentration. These data indicate that flower bud initiation in southern highbush blueberry is a SD/long night phytochrome-mediated response, and plant carbohydrate status plays little, if any, role in regulating initiation under these experimental conditions.

Free access

Rebecca L. Darnell, Nicacio Cruz-Huerta, and Jeffrey G. Williamson

Low night temperatures and/or high source-sink ratios increase ovary swelling and subsequent fruit malformation in many sweet peppers (Capsicum annuum), including bell pepper. Although this response has been correlated with increased ovary carbohydrate accumulation, evidence for this is limited. Furthermore, it is unknown how the combined effects of night temperature and source-sink ratio affect ovary carbohydrate accumulation and ovary swelling. The objectives of the present work were to determine night temperature and source-sink effects on ovary swelling, net carbon exchange rate (CER), and soluble sugar and starch concentrations in bell pepper ovaries at anthesis. Source-sink and temperature effects were tested by comparing fruiting (low source-sink ratio or high sink demand) with non-fruiting (high source-sink ratio or low sink demand) ‘Legionnaire’ bell pepper plants grown at 22/20 °C [high night temperature (HNT)] or 22/12 °C [low night temperature (LNT)] day:night temperatures. Flowers that opened after imposition of the temperature and fruiting treatments were harvested at anthesis. Ovaries from harvested flowers were weighed and analyzed for non-structural carbohydrates. Leaf gas exchange measurements were performed every 3 days. Ovary fresh weight of flowers harvested at anthesis was highest in non-fruiting plants under LNT and lowest in plants grown under HNT regardless of fruiting status. Mean CER averaged over the experimental period was significantly higher in fruiting plants under HNT compared with all other treatments. There were no significant interactions between night temperature and fruiting status on ovary soluble sugar or starch concentrations. Low night temperature increased glucose, fructose, and starch concentration and decreased sucrose concentration in the ovary wall compared with HNT. There were no differences in soluble sugar or starch concentrations in the ovary wall between fruiting and non-fruiting plants. Thus, although both low temperature and high source-sink ratio (i.e., non-fruiting plants) resulted in ovary swelling, the mechanisms appear to differ. Whereas LNT effects on ovary swelling were associated with increased ovary carbohydrate accumulation, this association was not apparent when ovary swelling occurred in response to high source-sink ratios.

Free access

Keith T. Birkhold, Karen E. Koch, and Rebecca L. Darnell

Carbon dioxide exchange, dry weight, C, and N content of `Bonita' and `Climax' blueberry (Vaccinium ashei Reade) fruit were measured from anthesis through fruit ripening to quantify developmental changes in amounts of imported C and N required for fruit development. Net photosynthesis occurred in fruit of both rabbiteye cultivars from petal fall through color break. During this time, fruit net photosynthesis declined from 16 μmol CO2/g fresh weight (FW) per hour for `Bonita' and 22 μmol CO2/g FW per hour for `Climax' to 0.2 μmol CO2/g FW per hour for both. Dark respiration for both cultivars declined following petal fall from 16 μmol CO2/g FW per hour to 3 μmol CO2/g FW per hour before increasing at fruit ripening to 9 μmol CO2/g FW per hour. Fruit C content was constant at 0.43 mg C/mg dry weight (DW) throughout development, while N content declined from 0.05 mg N/mg DW at petal fall to 0.01 mg N/mg DW at ripeness. DW accumulation and respiration accounted for 63% and 37%, respectively, of the total C requirement for fruit development. Fruit photosynthesis was estimated to contribute 15% of the total C required for fruit development in both cultivars; however, fruit photosynthesis supplied 50% of the C required during the first 10 days after bloom and 85% during the 5 days after petal fall. This large, early contribution of C from fruit photosynthesis may aid in the establishment of fruit until the current season's vegetative growth can supplement plant carbohydrate reserves in providing C for fruit development.

Full access

Gerardo H. Nunez, Alisson P. Kovaleski, and Rebecca L. Darnell

Consumer perception plays an important role in the decision to purchase organic vs. conventional produce. A web-based survey was used to evaluate perceptions and purchase behavior toward organic produce in a sample population of college-aged students. The effect of formal education on this perception was also investigated. Most subjects in this sample population were aware of and had positive perceptions of organic produce and organic agriculture. The likelihood of being an organic consumer was similar across genders, ages, and fields of study. Subjects who reported to be organic consumers associated less risk with organic produce than those who reported to never have purchased organic produce. A 50-minute lecture about organic agriculture altered the perception students had about organic produce. After the lecture, students expressed bleaker perceptions about the health benefits and ethical soundness of organic agriculture. On the other hand, after the lecture students expressed a more positive perception of the policies and regulations that govern the organic foods market. Overall, data suggest that students’ perception of organic produce and agriculture is based on anecdotal evidence and that formal education on the topic of organic agriculture can affect this perception.