Search Results

You are looking at 21 - 22 of 22 items for

  • Author or Editor: Raymond Wheeler x
  • Refine by Access: All x
Clear All Modify Search
Free access

Wheeler G. Foshee III, Brad E. Reeder, Raymond J. Kessler Jr., Larry W. Wells, Joseph M. Kemble, Edgar L. Vinson, Robert T. Boozer, and William A Dozier Jr

Production of high tunnel tomatoes and snapdragons was evaluated over a 2-year period at the Wiregrass Experiment Station, in southeastern Alabama. `BHN 640', `Florida 91', `Sunleaper', and `Carolina Gold', were evaluated in early Spring 2004. Results indicated that `BHN 640' outperformed `Florida 91' and `Carolina Gold' in early production of high tunnel grown tomatoes. A late Fall 2005 study examined `BHN 640' and `Florida 91'. Results indicated that `BHN 640' was superior to `Florida 91' in total marketable fruit. Season extension of both spring and fall tomato production were accomplished. A planting date study was completed in the early Spring 2005. The following four planting dates were evaluated: 31 Jan., 17 Feb., 4 Mar., and 25. Mar 2005. Wind damage to the high tunnel caused some mortality; however, the two earliest planting dates (31 Jan. and 17 Feb. 2005) produced over 10 lbs. of marketable tomatoes per plant. These were both superior to the last planting date of 25 Mar 2005. Cut snapdragons were evaluated for suitable colored mulch (red, white, or blue) and varieties for summer (`Opus Yellow', `Opus Rose', `Monaco Red', and `Potomac Early White') and fall (`Apollo Purple', `Apollo Yellow', `Monaco Red', `Monaco Rose', and `Potomac Early Orange') production. Results indicated that inflorescence length was affected by the color of mulch. The red mulch had increased inflorescence length compared to the white in Summer 2005. The Fall 2005 study revealed that white mulch had longer inflorescence length than the red or blue mulch. Some varietal differences were observed. The `Apollo Purple' had longer stem lengths than all other varieties for the fall study. The summer study revealed that `Opus Yellow' had longer inflorescence lengths than all others but stem lengths were all similar.

Free access

Desmond G. Mortley, Conrad K. Bonsi, Walter A. Hill, Carlton E. Morris, Carol S. Williams, Ceyla F. Davis, John W. Williams, Lanfang H. Levine, Barbara V. Petersen, and Raymond M. Wheeler

Because sweetpotato [Ipomoea batatas (L.) Lam.] stem cuttings regenerate very easily and quickly, a study of their early growth and development in microgravity could be useful to an understanding of morphological changes that might occur under such conditions for crops that are propagated vegetatively. An experiment was conducted aboard a U.S. Space Shuttle to investigate the impact of microgravity on root growth, distribution of amyloplasts in the root cells, and on the concentration of soluble sugars and starch in the stems of sweetpotatoes. Twelve stem cuttings of ‘Whatley/Loretan’ sweetpotato (5 cm long) with three to four nodes were grown in each of two plant growth units filled with a nutrient agarose medium impregnated with a half-strength Hoagland solution. One plant growth unit was flown on Space Shuttle Columbia for 5 days, whereas the other remained on the ground as a control. The cuttings were received within 2 h postflight and, along with ground controls, processed in ≈45 min. Adventitious roots were counted, measured, and fixed for electron microscopy and stems frozen for starch and sugar assays. Air samples were collected from the headspace of each plant growth unit for postflight determination of carbon dioxide, oxygen, and ethylene levels. All stem cuttings produced adventitious roots and growth was quite vigorous in both ground-based and flight samples and, except for a slight browning of some root tips in the flight samples, all stem cuttings appeared normal. The roots on the flight cuttings tended to grow in random directions. Also, stem cuttings grown in microgravity had more roots and greater total root length than ground-based controls. Amyloplasts in root cap cells of ground-based controls were evenly sedimented toward one end compared with a more random distribution in the flight samples. The concentration of soluble sugars, glucose, fructose, and sucrose and total starch concentration were all substantially greater in the stems of flight samples than those found in the ground-based samples. Carbon dioxide levels were 50% greater and oxygen marginally lower in the flight plants, whereas ethylene levels were similar and averaged less than 10 nL·L−1. Despite the greater accumulation of carbohydrates in the stems, and greater root growth in the flight cuttings, overall results showed minimal differences in cell development between space flight and ground-based tissues. This suggests that the space flight environment did not adversely impact sweetpotato metabolism and that vegetative cuttings should be an acceptable approach for propagating sweetpotato plants for space applications.