Search Results

You are looking at 21 - 30 of 30 items for

  • Author or Editor: Kim D. Bowman x
  • Refine by Access: All x
Clear All Modify Search
Free access

Kim D. Bowman, Frederick G. Gmitter Jr., and Xulan Hu

We examined the relationship between seed size and shape in Citrus and the number and type of seedlings produced by individual seeds for each of three citrus cultivars. Seed size and shape were related to the number of seedlings produced and the likelihood of recovering a zygotic seedling. The relationship between seed size and shape and the likelihood of recovering a zygotic seedling most often was connected with weight and thickness of a seed. This relationship might be of sufficient strength to use in some aspects of cultivar development. However, the relationship did not appear strong enough to be of practical value for application in commercial production of purely nucellar rootstock seedlings.

Free access

Ute Albrecht, David G. Hall, and Kim D. Bowman

Candidatus Liberibacter asiaticus (Las) is a phloem-limited bacterium associated with huanglongbing (HLB), one of the most destructive diseases of citrus in Florida and other citrus-producing countries. Natural transmission of Las occurs by the psyllid vector Diaphorina citri, but transmission can also occur through grafting with diseased budwood. As a result of the difficulty of maintaining Las in culture, screening of citrus germplasm for HLB resistance often relies on graft inoculation as the mode of pathogen transmission. This study evaluates transmission efficiencies and HLB progression in graft-inoculated and psyllid-inoculated citrus under greenhouse and natural conditions in the field. Frequencies of transmission in graft-inoculated greenhouse-grown plants varied between experiments and were as high as 90% in susceptible sweet orange plants 6 to 12 months after inoculation. Transmission frequency in a tolerant Citrus × Poncirus genotype (US-802) was 31% to 75%. In contrast, transmission of Las after controlled psyllid inoculation did not exceed 38% in any of four experiments in this study. Whereas the time from inoculation to detection of Las by polymerase chain reaction (PCR) was faster in psyllid-inoculated US-802 plants compared with graft-inoculated US-802 plants, it was similar in graft- and psyllid-inoculated sweet orange plants. HLB symptom expression was indistinguishable in graft- and psyllid-inoculated plants but was not always associated with the number of bacteria in affected leaves. The highest number of Las genomes per gram leaf tissue measured in sweet orange plants was one to four × 107 in graft-inoculated plants and one to two × 107 in psyllid-inoculated plants. Highest numbers measured in tolerant US-802 plants were one to three × 106 and two to six × 106, respectively. Compared with artificial inoculation in a greenhouse setting, natural inoculation of field-grown sweet orange trees occurred at a much slower pace, requiring more than 1 year for infection incidence to reach 50% and a minimum of 3 years to reach 100%.

Open access

Ute Albrecht, Shahrzad Bodaghi, Bo Meyering, and Kim D. Bowman

The rootstock plays a large role in modern citrus production because of its influence on tolerance to adverse abiotic and biotic soil-borne stresses, and on the general horticultural characteristics of the grafted scion. In recent years, rootstock has received increased attention as a management strategy to alleviate the devastating effects of the bacterial disease huanglongbing (HLB), also known as “citrus greening.” In commercial citrus nursery production, rootstocks are typically propagated by seed. Because of the increased demand for HLB-tolerant rootstocks, seed supply is often inadequate for the most popular cultivars. Cuttings and tissue culture (TC) propagation are alternative methods to supply adequate quantities of genetically identical rootstocks to be used as liners for grafting. However, there are concerns among nursery owners and citrus growers regarding the possible inferiority of rootstocks that are not propagated by seed. This study investigates the influence of rootstock propagation method on traits of sweet orange trees grafted on four commercially important rootstock cultivars during the nursery stage and during the first year of growth in a commercial citrus orchard. Several of the measured traits during the nursery stage, including rootstock sprouting, grafted tree growth, and root mass distribution were significantly influenced by the rootstock propagation method, but traits were also influenced by the rootstock cultivar. Our results also suggest that for tissue culture-propagated plants, differences in the starting material and the culturing method can affect the grafted tree behavior. Except for canopy spread and scion to rootstock trunk diameter ratio, tree growth during the orchard stage was determined by the combination of propagation method and rootstock, rather than by propagation method alone.

Open access

Rayane Barcelos Bisi, Ute Albrecht, and Kim D. Bowman

Six new hybrid rootstocks, ‘US-1279’, ‘US-1281’, ‘US-1282’, ‘US-1283’, ‘US-1284’, and ‘US-1516’, were released from the U.S. Department of Agriculture (USDA) citrus breeding program to provide improved tree tolerance to huanglongbing (HLB), the most destructive disease facing the citrus industry in the United States and many other parts of the world. Five of these new rootstocks were released based on field performance in trials with the rootstocks propagated by stem cuttings, rather than the traditional propagation using nucellar seedlings. In this study, we evaluated the fruit, seed, and seedling characteristics of these new rootstocks, along with four other USDA rootstocks of commercial importance. The study included a determination of the percentage of true-to-type and off-type seedlings by both plant morphology and simple sequence repeat (SSR) markers. All 10 rootstocks produced an acceptable number of seeds and good seedling emergence from those seeds. The rootstocks ‘Swingle’, ‘US-802’, ‘US-812’, ‘US-1283’, ‘US-1284’, and ‘US-1516’ had a high percentage of true-to-type seedlings and correspondingly good potential to be propagated by seeds. However, no true-to-type plants were observed among seedlings from the rootstocks ‘US-1279’, ‘US-1281’, and ‘US-1282’, indicating that economical seed propagation will be impossible for these cultivars. The 10 SSR marker sets used in this study were observed to easily differentiate the 10 rootstocks studied, and readily distinguished true-to-type and off-type seedlings among progeny from all 10 rootstock clones. This study presents information of significant value for commercial nurseries involved in propagation of citrus rootstocks, and those involved in citrus rootstock breeding and development around the world. We propose the use of these 10 SSR marker sets as readily applicable for accurate identification of most citrus rootstock cultivars and their true-to-type seedlings.

Full access

Kim D. Bowman, Greg McCollum, Anne Plotto, and Jinhe Bai

Open access

Sameer Pokhrel, Bo Meyering, Kim D. Bowman, and Ute Albrecht

Huanglongbing (HLB) is a devastating disease of citrus that is found in most citrus production areas around the world. The bacterium associated with HLB resides in and damages the phloem, restricting the movement of photosynthates throughout the plant and leading to tree decline. Considerable root loss can be observed in affected trees even when few disease symptoms are visible aboveground. Root traits can substantially influence tree performance and use of superior rootstocks is one strategy to manage tree health and reduce production losses in a disease-endemic environment. Citrus rootstocks are typically propagated by seed, but due to the increased demand for some of the best-performing cultivars, propagation by other methods is being used to overcome seed shortages. In this research, differences in root architecture and root growth of six different rootstocks propagated by seed, cuttings, and tissue culture, and their influence on the grafted ‘Valencia’ (Citrus sinensis) scion were investigated. A field trial was established in southwest Florida in 2017. Trees were evaluated for their performance during the first 2 years after planting and a subset of trees was excavated for detailed analysis of root architectures and biomass distribution. Significant differences among propagation methods were found for the rootstock trunk diameter and the lateral (structural) root length, which were largest in seed-propagated rootstocks. Most of the other horticultural and root architectural traits were not significantly influenced by the rootstock-propagation method; however, many of the measured variables were significantly influenced by the rootstock cultivar regardless of the propagation method. The results showed that rootstocks propagated by cuttings and tissue culture were similar to seed-propagated rootstocks in their influence on the grafted tree during the early years of growth in the field.

Free access

Ute Albrecht, Mireia Bordas, Beth Lamb, Bo Meyering, and Kim D. Bowman

There are generally inadequate supplies of seed for the newest rootstocks to satisfy the growing demand for the propagation material to be used in commercial citrus nurseries. Consequently, rootstock propagation, which is traditionally by seed, now often makes use of alternative methods such as cuttings and tissue culture (TC). Propagation through cuttings and TC will generate a root system that is largely composed of adventitious or lateral roots, compared with seed propagation, which will generally promote the formation of a well-defined taproot. In this study, we compared root architecture and growth of seven different rootstock plants, generated from seed, stem cuttings, or TC, during the early weeks of growth in the greenhouse. Based on total dry biomass, root mass fraction of plants generated from cuttings ranged from 11% to 16%, and from 16% to 29% and 21% to 30% for micropropagated plants and seedlings, respectively. Plants propagated through cuttings had the most primary roots (7–10), followed by tissue culture–propagated plants which developed an average of 2–6 primary roots. As expected, plants grown from seeds mostly developed a single and well-defined taproot during the first weeks. The total number of first order lateral roots was highest in the plants propagated as cuttings (108–185) compared with 53–103 and 43–78 for tissue culture–propagated plants and seedlings, respectively. Similarly, specific root length (SRL) was highest in plants derived from cuttings (21–43 m·g−1) and lowest in plants grown from seed (7–20 m·g−1). It is suggested that the larger number and length of roots on rootstock plants propagated through vegetative methods may be better suited for resource acquisition as compared with seed propagated plants.

Free access

William S. Castle, Kim D. Bowman, James C. Baldwin, Jude W. Grosser, and Frederick G. Gmitter Jr.

Two adjacent rootstock trials were conducted in the east coast Indian River region of Florida with ‘Marsh’ grapefruit (Citrus paradisi Macf.) scion. The objective was to find rootstocks to replace sour orange (C. aurantium L.) because of losses to citrus tristeza virus, and to replace Swingle citrumelo [C. paradisi × Poncirus trifoliata (L.) Raf.] because of its limited usefulness in certain poorly drained coastal sites. The trials were conducted in randomized complete blocks with 12 single-tree replicates spaced 4.6 × 6.9 m. The soils were of the Wabasso and Riviera series. The first trial consisted largely of trees on citrange [C. sinensis (L.) Osb. × P. trifoliata] and citrumelo rootstocks, ‘Cipo’ sweet orange (C. sinensis), and various hybrid rootstocks. The second trial involved mandarin rootstocks (C. reticulata Blanco) and sour orange and related rootstocks. Trees were grown for 7 years and yield and juice quality data were collected for the last 4 years of that period. Those rootstocks identified as the most promising, based on combinations of smaller tree size and high productivity and juice quality, were two Sunki mandarin × Swingle trifoliate orange (TF) hybrids (C-54, C-146), a Sunki mandarin × Flying Dragon TF hybrid, C-35 citrange, and a Cleopatra mandarin × Rubidoux TF hybrid (×639). The trees on these five rootstocks cropped well leading to soluble solids (SS) values of 3000 to 4000 kg/ha when they were 7-years old. The trees on C-54 and C-146 were relatively large, somewhat taller than trees on sour orange, whereas those on C-35 and the Sunki × Flying Dragon hybrid were smaller and similar to sour orange in tree height. Fruit quality among the trees on C-35 and the Sunki × Flying Dragon hybrid had relatively high SS concentration (better than sour orange), and the other three rootstocks had relatively lower solids concentration (poorer than sour orange). The trees on C-35 and the Sunki × Flying Dragon hybrid would be good candidates for higher density orchards.

Full access

Mark A. Ritenour, Ed Stover, Brian J. Boman, Huating Dou, Kim D. Bowman, and William S. Castle

Rootstock significantly affected the development of stem-end rind breakdown (SERB) on `Valencia' and navel oranges (Citrus sinensis), but not `Ray Ruby' grapefruit (C. paradisi) or `Oroblanco' (C. grandis × C. paradisi), and affected postharvest decay on navel orange, `Ray Ruby' grapefruit, `Oroblanco' and one of two seasons (2002) on `Valencia' orange. In `Valencia' and navel oranges, fruit from trees grown on Gou Tou (unidentified Citrus hybrid) consistently developed low SERB. `Valencia' oranges on US-952 [(C. paradisi × C. reticulata) × Poncirus trifoliata] developed high levels of SERB in both years tested. Relative SERB of fruit from other rootstocks was more variable. Navel oranges, `Ray Ruby' grapefruit, and `Oroblanco' fruit from trees on Cleopatra mandarin (C. reticulata) rootstock consistently developed relatively low levels of decay, and in navel this level was significantly lower than observed from trees on all other rootstocks. In three of five trials we observed significant differences between widely used commercial rootstocks in their effects on postharvest SERB and/or decay. Given the expanding importance of sales to distant markets, it is suggested that evaluations of quality retention during storage be included when developing citrus rootstocks and scion varieties for the fresh market.

Free access

Kim D. Bowman, Frederick G. Gmitter Jr., Gloria A. Moore, and Russell L. Rouseff

Citrus fruit with sector chimeras were collected in commercial packinghouses and from the field. Chimeric fruit from eight cultivars of sweet oranges [Citrus sinensis (L.) Osbeck], grapefruit (C. paradisi Macf.), tangelo (C. paradisi × C. reticulate Blanco), and tangors (C. reticulate × c. sinensis) were found at a frequency of 0.009% to 0.271%. Tetraploid plants obtained from one type of sector mutant (termed gigas) and albino plants obtained from another type of sector mutant confirmed that some genetic mutations observed in fruit rind can be recovered in nucellar seedlings. The gigas chimeras were identified as a source of citrus tetraploids. Several types of potentially useful sector mutants with altered rind color were observed, and plants were produced from some mutant sectors by developed seed or culture of aborted ovules. HPLC analysis of rind tissues from sectors of one chimeric fruit revealed substantial quantitative and qualitative differences in pigment composition. Propagation of plants from mutant sectors may yield cultivars with improved fruit color, altered maturation date, and reduced disease or mite susceptibility and may eventually lead to breeding of seedless triploid hybrids.